Abstract:With the rapid development of large language models (LLMs) and their integration into large multimodal models (LMMs), there has been impressive progress in zero-shot completion of user-oriented vision-language tasks. However, a gap remains in the domain of chart image understanding due to the distinct abstract components in charts. To address this, we introduce a large-scale MultiModal Chart Instruction (MMC-Instruction) dataset comprising 600k instances supporting diverse tasks and chart types. Leveraging this data, we develop MultiModal Chart Assistant (MMCA), an LMM that achieves state-of-the-art performance on existing chart QA benchmarks. Recognizing the need for a comprehensive evaluation of LMM chart understanding, we also propose a MultiModal Chart Benchmark (MMC-Benchmark), a comprehensive human-annotated benchmark with 9 distinct tasks evaluating reasoning capabilities over charts. Extensive experiments on MMC-Benchmark reveal the limitations of existing LMMs on correctly interpreting charts, even for the most recent GPT-4V model. Our work provides an instruction-tuning methodology and benchmark to advance multimodal understanding of charts.
Abstract:Multi-document summarization aims to obtain core information from a collection of documents written on the same topic. This paper proposes a new holistic framework for unsupervised multi-document extractive summarization. Our method incorporates the holistic beam search inference method associated with the holistic measurements, named Subset Representative Index (SRI). SRI balances the importance and diversity of a subset of sentences from the source documents and can be calculated in unsupervised and adaptive manners. To demonstrate the effectiveness of our method, we conduct extensive experiments on both small and large-scale multi-document summarization datasets under both unsupervised and adaptive settings. The proposed method outperforms strong baselines by a significant margin, as indicated by the resulting ROUGE scores and diversity measures. Our findings also suggest that diversity is essential for improving multi-document summary performance.
Abstract:We consider the problem of eliciting compositional generalization capabilities in large language models (LLMs) with a novel type of prompting strategy. Compositional generalization empowers the LLMs to solve problems that are harder than the ones they have seen (i.e., easy-to-hard generalization), which is a critical reasoning capability of human-like intelligence. However, even the current state-of-the-art LLMs still struggle with this form of reasoning. To bridge this gap, we propose skills-in-context (SKiC) prompting, which instructs LLMs how to compose basic skills to resolve more complex problems. We find that it is crucial to demonstrate both the skills and the compositional examples within the same prompting context. With as few as two examplars, our SKiC prompting initiates strong synergies between skills and their composition capabilities. Notably, it empowers LLMs to solve unseen problems that require innovative skill compositions, achieving near-perfect generalization on a broad range of challenging compositionality tasks. Intriguingly, SKiC prompting unlocks the latent potential of LLMs, enabling them to leverage pre-existing internal skills acquired during earlier pre-training stages, even when these skills are not explicitly presented in the prompting context. This results in the capability of LLMs to solve unseen complex problems by activating and composing internal competencies. With such prominent features, SKiC prompting is able to achieve state-of-the-art performance on challenging mathematical reasoning benchmarks (e.g., MATH).
Abstract:Pairwise human judgments are pivotal in guiding large language models (LLMs) to generate outputs that align with human preferences. They are also often used in summarization evaluation, complementing existing automatic metrics. Despite their significance, however, there has been limited research probing these pairwise human judgments. The collective impact and respective weights of factors such as informativeness, coherence, fluency, and factual consistency remain elusive. The impact of hidden factors on the final judgment is also unclear. In this paper, we conduct an in-depth examination of a dataset of pairwise human judgments released by OpenAI. Utilizing the Bradley-Terry-Luce model, we identify key factors that could potentially influence human judgments. Our research uncovers the inherent preferences embedded in human judgments and suggests strategies to boost sample efficiency. Finally, we provide insights on the construction of balanced datasets for human judgment evaluations, a crucial step in shaping the behaviors of future LLMs.
Abstract:We consider the problem of Open-world Information Extraction (Open-world IE), which extracts comprehensive entity profiles from unstructured texts. Different from the conventional closed-world setting of Information Extraction (IE), Open-world IE considers a more general situation where entities and relations could be beyond a predefined ontology. More importantly, we seek to develop a large language model (LLM) that is able to perform Open-world IE to extract desirable entity profiles characterized by (possibly fine-grained) natural language instructions. We achieve this by finetuning LLMs using instruction tuning. In particular, we construct INSTRUCTOPENWIKI, a substantial instruction tuning dataset for Open-world IE enriched with a comprehensive corpus, extensive annotations, and diverse instructions. We finetune the pretrained BLOOM models on INSTRUCTOPENWIKI and obtain PIVOINE, an LLM for Open-world IE with strong instruction-following capabilities. Our experiments demonstrate that PIVOINE significantly outperforms traditional closed-world methods and other LLM baselines, displaying impressive generalization capabilities on both unseen instructions and out-of-ontology cases. Consequently, PIVOINE emerges as a promising solution to tackle the open-world challenge in IE effectively.
Abstract:Traditional sentence embedding models encode sentences into vector representations to capture useful properties such as the semantic similarity between sentences. However, in addition to similarity, sentence semantics can also be interpreted via compositional operations such as sentence fusion or difference. It is unclear whether the compositional semantics of sentences can be directly reflected as compositional operations in the embedding space. To more effectively bridge the continuous embedding and discrete text spaces, we explore the plausibility of incorporating various compositional properties into the sentence embedding space that allows us to interpret embedding transformations as compositional sentence operations. We propose InterSent, an end-to-end framework for learning interpretable sentence embeddings that supports compositional sentence operations in the embedding space. Our method optimizes operator networks and a bottleneck encoder-decoder model to produce meaningful and interpretable sentence embeddings. Experimental results demonstrate that our method significantly improves the interpretability of sentence embeddings on four textual generation tasks over existing approaches while maintaining strong performance on traditional semantic similarity tasks.
Abstract:Researchers have proposed various information extraction (IE) techniques to convert news articles into structured knowledge for news understanding. However, none of the existing methods have explicitly addressed the issue of framing bias that is inherent in news articles. We argue that studying and identifying framing bias is a crucial step towards trustworthy event understanding. We propose a novel task, neutral event graph induction, to address this problem. An event graph is a network of events and their temporal relations. Our task aims to induce such structural knowledge with minimal framing bias in an open domain. We propose a three-step framework to induce a neutral event graph from multiple input sources. The process starts by inducing an event graph from each input source, then merging them into one merged event graph, and lastly using a Graph Convolutional Network to remove event nodes with biased connotations. We demonstrate the effectiveness of our framework through the use of graph prediction metrics and bias-focused metrics.
Abstract:Aspect or query-based summarization has recently caught more attention, as it can generate differentiated summaries based on users' interests. However, the current dataset for aspect or query-based summarization either focuses on specific domains, contains relatively small-scale instances, or includes only a few aspect types. Such limitations hinder further explorations in this direction. In this work, we take advantage of crowd-sourcing knowledge on Wikipedia.org and automatically create a high-quality, large-scale open-domain aspect-based summarization dataset named OASum, which contains more than 3.7 million instances with around 1 million different aspects on 2 million Wikipedia pages. We provide benchmark results on OAsum and demonstrate its ability for diverse aspect-based summarization generation. To overcome the data scarcity problem on specific domains, we also perform zero-shot, few-shot, and fine-tuning on seven downstream datasets. Specifically, zero/few-shot and fine-tuning results show that the model pre-trained on our corpus demonstrates a strong aspect or query-focused generation ability compared with the backbone model. Our dataset and pre-trained checkpoints are publicly available.
Abstract:Narrative summarization aims to produce a distilled version of a narrative to describe its most salient events and characters. Summarizing a narrative is challenging as it requires an understanding of event causality and character behaviors. To encourage research in this direction, we propose NarraSum, a large-scale narrative summarization dataset. It contains 122K narrative documents, which are collected from plot descriptions of movies and TV episodes with diverse genres, and their corresponding abstractive summaries. Experiments show that there is a large performance gap between humans and the state-of-the-art summarization models on NarraSum. We hope that this dataset will promote future research in summarization, as well as broader studies of natural language understanding and generation. The dataset is available at https://github.com/zhaochaocs/narrasum.
Abstract:Text segmentation is important for signaling a document's structure. Without segmenting a long document into topically coherent sections, it is difficult for readers to comprehend the text, let alone find important information. The problem is only exacerbated by a lack of segmentation in transcripts of audio/video recordings. In this paper, we explore the role that section segmentation plays in extractive summarization of written and spoken documents. Our approach learns robust sentence representations by performing summarization and segmentation simultaneously, which is further enhanced by an optimization-based regularizer to promote selection of diverse summary sentences. We conduct experiments on multiple datasets ranging from scientific articles to spoken transcripts to evaluate the model's performance. Our findings suggest that the model can not only achieve state-of-the-art performance on publicly available benchmarks, but demonstrate better cross-genre transferability when equipped with text segmentation. We perform a series of analyses to quantify the impact of section segmentation on summarizing written and spoken documents of substantial length and complexity.