Alert button
Picture for Faeze Brahman

Faeze Brahman

Alert button

MacGyver: Are Large Language Models Creative Problem Solvers?

Nov 16, 2023
Yufei Tian, Abhilasha Ravichander, Lianhui Qin, Ronan Le Bras, Raja Marjieh, Nanyun Peng, Yejin Choi, Thomas L. Griffiths, Faeze Brahman

We explore the creative problem-solving capabilities of modern large language models (LLMs) in a constrained setting. The setting requires circumventing a cognitive bias known in psychology as ''functional fixedness'' to use familiar objects in innovative or unconventional ways. To this end, we create MacGyver, an automatically generated dataset consisting of 1,600 real-world problems that deliberately trigger functional fixedness and require thinking 'out-of-the-box'. We then present our collection of problems to both LLMs and humans to compare and contrast their problem-solving abilities. We show that MacGyver is challenging for both groups, but in unique and complementary ways. For example, humans typically excel in solving problems that they are familiar with but may struggle with tasks requiring domain-specific knowledge, leading to a higher variance. On the other hand, LLMs, being exposed to a variety of highly specialized knowledge, attempt broader problems but are prone to overconfidence and propose actions that are physically infeasible or inefficient. We also provide a detailed error analysis of LLMs, and demonstrate the potential of enhancing their problem-solving ability with novel prompting techniques such as iterative step-wise reflection and divergent-convergent thinking. This work provides insight into the creative problem-solving capabilities of humans and AI and illustrates how psychological paradigms can be extended into large-scale tasks for comparing humans and machines.

Viaarxiv icon

One Size Does Not Fit All: Customizing Open-Domain Procedures

Nov 16, 2023
Yash Kumar Lal, Li Zhang, Faeze Brahman, Bodhisattwa Prasad Majumder, Peter Clark, Niket Tandon

How-to procedures, such as how to plant a garden, are ubiquitous. But one size does not fit all - humans often need to customize these procedural plans according to their specific needs, e.g., planting a garden without pesticides. While LLMs can fluently generate generic procedures, we present the first study on how well LLMs can customize open-domain procedures. We introduce CustomPlans, a probe dataset of customization hints that encodes diverse user needs for open-domain How-to procedures. Using LLMs as CustomizationAgent and ExecutionAgent in different settings, we establish their abilities to perform open-domain procedure customization. Human evaluation shows that using these agents in a Sequential setting is the best, but they are good enough only ~51% of the time. Error analysis shows that LLMs do not sufficiently address user customization needs in their generated procedures.

Viaarxiv icon

UNcommonsense Reasoning: Abductive Reasoning about Uncommon Situations

Nov 14, 2023
Wenting Zhao, Justin T Chiu, Jena D. Hwang, Faeze Brahman, Jack Hessel, Sanjiban Choudhury, Yejin Choi, Xiang Lorraine Li, Alane Suhr

Language technologies that accurately model the dynamics of events must perform commonsense reasoning. Existing work evaluating commonsense reasoning focuses on making inferences about common, everyday situations. To instead investigate the ability to model unusual, unexpected, and unlikely situations, we explore the task of uncommonsense abductive reasoning. Given a piece of context with an unexpected outcome, this task requires reasoning abductively to generate a natural language explanation that makes the unexpected outcome more likely in the context. To this end, we curate and release a new English language corpus called UNcommonsense. We characterize the differences between the performance of human explainers and the best performing large language models, finding that model-enhanced human-written explanations achieve the highest quality by trading off between specificity and diversity. Finally, we experiment with several online imitation learning algorithms to train open and accessible language models on this task. When compared with the vanilla supervised fine-tuning approach, these methods consistently reduce lose rates on both common and uncommonsense abductive reasoning judged by human evaluators.

Viaarxiv icon

In Search of the Long-Tail: Systematic Generation of Long-Tail Knowledge via Logical Rule Guided Search

Nov 13, 2023
Huihan Li, Yuting Ning, Zeyi Liao, Siyuan Wang, Xiang Lorraine Li, Ximing Lu, Faeze Brahman, Wenting Zhao, Yejin Choi, Xiang Ren

Since large language models have approached human-level performance on many tasks, it has become increasingly harder for researchers to find tasks that are still challenging to the models. Failure cases usually come from the long-tail distribution - data that an oracle language model could assign a probability on the lower end of its distribution. Current methodology such as prompt engineering or crowdsourcing are insufficient for creating long-tail examples because humans are constrained by cognitive bias. We propose a Logic-Induced-Knowledge-Search (LINK) framework for systematically generating long-tail knowledge statements. Grounded by a symbolic rule, we search for long-tail values for each variable of the rule by first prompting a LLM, then verifying the correctness of the values with a critic, and lastly pushing for the long-tail distribution with a reranker. With this framework we construct a dataset, Logic-Induced-Long-Tail (LINT), consisting of 200 symbolic rules and 50K knowledge statements spanning across four domains. Human annotations find that 84% of the statements in LINT are factually correct. In contrast, ChatGPT and GPT4 struggle with directly generating long-tail statements under the guidance of logic rules, each only getting 56% and 78% of their statements correct. Moreover, their "long-tail" generations in fact fall into the higher likelihood range, and thus are not really long-tail. Our findings suggest that LINK is effective for generating data in the long-tail distribution while enforcing quality. LINT can be useful for systematically evaluating LLMs' capabilities in the long-tail distribution. We challenge the models with a simple entailment classification task using samples from LINT. We find that ChatGPT and GPT4's capability in identifying incorrect knowledge drop by ~3% in the long-tail distribution compared to head distribution.

Viaarxiv icon

STEER: Unified Style Transfer with Expert Reinforcement

Nov 13, 2023
Skyler Hallinan, Faeze Brahman, Ximing Lu, Jaehun Jung, Sean Welleck, Yejin Choi

While text style transfer has many applications across natural language processing, the core premise of transferring from a single source style is unrealistic in a real-world setting. In this work, we focus on arbitrary style transfer: rewriting a text from an arbitrary, unknown style to a target style. We propose STEER: Unified Style Transfer with Expert Reinforcement, a unified frame-work developed to overcome the challenge of limited parallel data for style transfer. STEER involves automatically generating a corpus of style-transfer pairs using a product of experts during decoding. The generated offline data is then used to pre-train an initial policy before switching to online, off-policy reinforcement learning for further improvements via fine-grained reward signals. STEER is unified and can transfer to multiple target styles from an arbitrary, unknown source style, making it particularly flexible and efficient. Experimental results on a challenging dataset with text from a diverse set of styles demonstrate state-of-the-art results compared to competitive baselines. Remarkably, STEER outperforms the 175B parameter instruction-tuned GPT-3 on overall style transfer quality, despite being 226 times smaller in size. We also show STEER is robust, maintaining its style transfer capabilities on out-of-domain data, and surpassing nearly all baselines across various styles. The success of our method highlights the potential of RL algorithms when augmented with controllable decoding to overcome the challenge of limited data supervision.

* for associated code, see 
Viaarxiv icon

Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs

Nov 09, 2023
Da Yin, Faeze Brahman, Abhilasha Ravichander, Khyathi Chandu, Kai-Wei Chang, Yejin Choi, Bill Yuchen Lin

We introduce Lumos, a novel framework for training language agents that employs a unified data format and a modular architecture based on open-source large language models (LLMs). Lumos consists of three distinct modules: planning, grounding, and execution. The planning module breaks down a task into a series of high-level, tool-agnostic subgoals, which are then made specific by the grounding module through a set of low-level actions. These actions are subsequently executed by the execution module, utilizing a range of off-the-shelf tools and APIs. In order to train these modules effectively, high-quality annotations of subgoals and actions were collected and are made available for fine-tuning open-source LLMs for various tasks such as complex question answering, web tasks, and math problems. Leveraging this unified data and modular design, Lumos not only achieves comparable or superior performance to current, state-of-the-art agents, but also exhibits several key advantages: (1) Lumos surpasses GPT-4/3.5-based agents in complex question answering and web tasks, while equalling the performance of significantly larger LLM agents on math tasks; (2) Lumos outperforms open-source agents created through conventional training methods and those using chain-of-thoughts training; and (3) Lumos is capable of effectively generalizing to unseen interactive tasks, outperforming larger LLM-based agents and even exceeding performance of specialized agents.

* Project website: 
Viaarxiv icon

What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations

Nov 01, 2023
Kavel Rao, Liwei Jiang, Valentina Pyatkin, Yuling Gu, Niket Tandon, Nouha Dziri, Faeze Brahman, Yejin Choi

Figure 1 for What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations
Figure 2 for What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations
Figure 3 for What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations
Figure 4 for What Makes it Ok to Set a Fire? Iterative Self-distillation of Contexts and Rationales for Disambiguating Defeasible Social and Moral Situations

Moral or ethical judgments rely heavily on the specific contexts in which they occur. Understanding varying shades of defeasible contextualizations (i.e., additional information that strengthens or attenuates the moral acceptability of an action) is critical to accurately represent the subtlety and intricacy of grounded human moral judgment in real-life scenarios. We introduce defeasible moral reasoning: a task to provide grounded contexts that make an action more or less morally acceptable, along with commonsense rationales that justify the reasoning. To elicit high-quality task data, we take an iterative self-distillation approach that starts from a small amount of unstructured seed knowledge from GPT-3 and then alternates between (1) self-distillation from student models; (2) targeted filtering with a critic model trained by human judgment (to boost validity) and NLI (to boost diversity); (3) self-imitation learning (to amplify the desired data quality). This process yields a student model that produces defeasible contexts with improved validity, diversity, and defeasibility. From this model we distill a high-quality dataset, \delta-Rules-of-Thumb, of 1.2M entries of contextualizations and rationales for 115K defeasible moral actions rated highly by human annotators 85.9% to 99.8% of the time. Using \delta-RoT we obtain a final student model that wins over all intermediate student models by a notable margin.

* Camera Ready EMNLP Findings 2023. First two authors contributed equally 
Viaarxiv icon

The Generative AI Paradox: "What It Can Create, It May Not Understand"

Oct 31, 2023
Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian Fisher, Abhilasha Ravichander, Khyathi Chandu, Benjamin Newman, Pang Wei Koh, Allyson Ettinger, Yejin Choi

The recent wave of generative AI has sparked unprecedented global attention, with both excitement and concern over potentially superhuman levels of artificial intelligence: models now take only seconds to produce outputs that would challenge or exceed the capabilities even of expert humans. At the same time, models still show basic errors in understanding that would not be expected even in non-expert humans. This presents us with an apparent paradox: how do we reconcile seemingly superhuman capabilities with the persistence of errors that few humans would make? In this work, we posit that this tension reflects a divergence in the configuration of intelligence in today's generative models relative to intelligence in humans. Specifically, we propose and test the Generative AI Paradox hypothesis: generative models, having been trained directly to reproduce expert-like outputs, acquire generative capabilities that are not contingent upon -- and can therefore exceed -- their ability to understand those same types of outputs. This contrasts with humans, for whom basic understanding almost always precedes the ability to generate expert-level outputs. We test this hypothesis through controlled experiments analyzing generation vs. understanding in generative models, across both language and image modalities. Our results show that although models can outperform humans in generation, they consistently fall short of human capabilities in measures of understanding, as well as weaker correlation between generation and understanding performance, and more brittleness to adversarial inputs. Our findings support the hypothesis that models' generative capability may not be contingent upon understanding capability, and call for caution in interpreting artificial intelligence by analogy to human intelligence.

Viaarxiv icon

Affective and Dynamic Beam Search for Story Generation

Oct 23, 2023
Tenghao Huang, Ehsan Qasemi, Bangzheng Li, He Wang, Faeze Brahman, Muhao Chen, Snigdha Chaturvedi

Figure 1 for Affective and Dynamic Beam Search for Story Generation
Figure 2 for Affective and Dynamic Beam Search for Story Generation
Figure 3 for Affective and Dynamic Beam Search for Story Generation
Figure 4 for Affective and Dynamic Beam Search for Story Generation

Storytelling's captivating potential makes it a fascinating research area, with implications for entertainment, education, therapy, and cognitive studies. In this paper, we propose Affective Story Generator (AffGen) for generating interesting narratives. AffGen introduces "intriguing twists" in narratives by employing two novel techniques-Dynamic Beam Sizing and Affective Reranking. Dynamic Beam Sizing encourages less predictable, more captivating word choices using a contextual multi-arm bandit model. Affective Reranking prioritizes sentence candidates based on affect intensity. Our empirical evaluations, both automatic and human, demonstrate AffGen's superior performance over existing baselines in generating affectively charged and interesting narratives. Our ablation study and analysis provide insights into the strengths and weaknesses of AffGen.

* Accepted at EMNLP-findings 2023 
Viaarxiv icon