Abstract:Numerous web applications rely on solving combinatorial optimization problems, such as energy cost-aware scheduling, budget allocation on web advertising, and graph matching on social networks. However, many optimization problems involve unknown coefficients, and improper predictions of these factors may lead to inferior decisions which may cause energy wastage, inefficient resource allocation, inappropriate matching in social networks, etc. Such a research topic is referred to as "Predict-Then-Optimize (PTO)" which considers the performance of prediction and decision-making in a unified system. A noteworthy recent development is the end-to-end methods by directly optimizing the ultimate decision quality which claims to yield better results in contrast to the traditional two-stage approach. However, the evaluation benchmarks in this field are fragmented and the effectiveness of various models in different scenarios remains unclear, hindering the comprehensive assessment and fast deployment of these methods. To address these issues, we provide a comprehensive categorization of current approaches and integrate existing experimental scenarios to establish a unified benchmark, elucidating the circumstances under which end-to-end training yields improvements, as well as the contexts in which it performs ineffectively. We also introduce a new dataset for the industrial combinatorial advertising problem for inclusive finance to open-source. We hope the rethinking and benchmarking of PTO could facilitate more convenient evaluation and deployment, and inspire further improvements both in the academy and industry within this field.
Abstract:Vision transformers (ViTs) have recently been used for visual matching beyond object detection and segmentation. However, the original grid dividing strategy of ViTs neglects the spatial information of the keypoints, limiting the sensitivity to local information. Therefore, we propose \textbf{QueryTrans} (Query Transformer), which adopts a cross-attention module and keypoints-based center crop strategy for better spatial information extraction. We further integrate the graph attention module and devise a transformer-based graph matching approach \textbf{GMTR} (Graph Matching TRansformers) whereby the combinatorial nature of GM is addressed by a graph transformer neural GM solver. On standard GM benchmarks, GMTR shows competitive performance against the SOTA frameworks. Specifically, on Pascal VOC, GMTR achieves $\mathbf{83.6\%}$ accuracy, $\mathbf{0.9\%}$ higher than the SOTA framework. On Spair-71k, GMTR shows great potential and outperforms most of the previous works. Meanwhile, on Pascal VOC, QueryTrans improves the accuracy of NGMv2 from $80.1\%$ to $\mathbf{83.3\%}$, and BBGM from $79.0\%$ to $\mathbf{84.5\%}$. On Spair-71k, QueryTrans improves NGMv2 from $80.6\%$ to $\mathbf{82.5\%}$, and BBGM from $82.1\%$ to $\mathbf{83.9\%}$. Source code will be made publicly available.
Abstract:Cross-Domain Sequential Recommendation (CDSR) methods aim to tackle the data sparsity and cold-start problems present in Single-Domain Sequential Recommendation (SDSR). Existing CDSR works design their elaborate structures relying on overlapping users to propagate the cross-domain information. However, current CDSR methods make closed-world assumptions, assuming fully overlapping users across multiple domains and that the data distribution remains unchanged from the training environment to the test environment. As a result, these methods typically result in lower performance on online real-world platforms due to the data distribution shifts. To address these challenges under open-world assumptions, we design an \textbf{A}daptive \textbf{M}ulti-\textbf{I}nterest \textbf{D}ebiasing framework for cross-domain sequential recommendation (\textbf{AMID}), which consists of a multi-interest information module (\textbf{MIM}) and a doubly robust estimator (\textbf{DRE}). Our framework is adaptive for open-world environments and can improve the model of most off-the-shelf single-domain sequential backbone models for CDSR. Our MIM establishes interest groups that consider both overlapping and non-overlapping users, allowing us to effectively explore user intent and explicit interest. To alleviate biases across multiple domains, we developed the DRE for the CDSR methods. We also provide a theoretical analysis that demonstrates the superiority of our proposed estimator in terms of bias and tail bound, compared to the IPS estimator used in previous work.
Abstract:Sequential processes in real-world often carry a combination of simple subsystems that interact with each other in certain forms. Learning such a modular structure can often improve the robustness against environmental changes. In this paper, we propose recurrent independent Grid LSTM (RigLSTM), composed of a group of independent LSTM cells that cooperate with each other, for exploiting the underlying modular structure of the target task. Our model adopts cell selection, input feature selection, hidden state selection, and soft state updating to achieve a better generalization ability on the basis of the recent Grid LSTM for the tasks where some factors differ between training and evaluation. Specifically, at each time step, only a fraction of cells are activated, and the activated cells select relevant inputs and cells to communicate with. At the end of one time step, the hidden states of the activated cells are updated by considering the relevance between the inputs and the hidden states from the last and current time steps. Extensive experiments on diversified sequential modeling tasks are conducted to show the superior generalization ability when there exist changes in the testing environment. Source code is available at \url{https://github.com/ziyuwwang/rig-lstm}.
Abstract:Autonomous driving technology, a catalyst for revolutionizing transportation and urban mobility, has the tend to transition from rule-based systems to data-driven strategies. Traditional module-based systems are constrained by cumulative errors among cascaded modules and inflexible pre-set rules. In contrast, end-to-end autonomous driving systems have the potential to avoid error accumulation due to their fully data-driven training process, although they often lack transparency due to their ``black box" nature, complicating the validation and traceability of decisions. Recently, large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers. A natural thought is to utilize these abilities to empower autonomous driving. By combining LLM with foundation vision models, it could open the door to open-world understanding, reasoning, and few-shot learning, which current autonomous driving systems are lacking. In this paper, we systematically review a research line about \textit{Large Language Models for Autonomous Driving (LLM4AD)}. This study evaluates the current state of technological advancements, distinctly outlining the principal challenges and prospective directions for the field. For the convenience of researchers in academia and industry, we provide real-time updates on the latest advances in the field as well as relevant open-source resources via the designated link: https://github.com/Thinklab-SJTU/Awesome-LLM4AD.
Abstract:Existing graph matching methods typically assume that there are similar structures between graphs and they are matchable. However, these assumptions do not align with real-world applications. This work addresses a more realistic scenario where graphs exhibit diverse modes, requiring graph grouping before or along with matching, a task termed mixture graph matching and clustering. We introduce Minorize-Maximization Matching and Clustering (M3C), a learning-free algorithm that guarantees theoretical convergence through the Minorize-Maximization framework and offers enhanced flexibility via relaxed clustering. Building on M3C, we develop UM3C, an unsupervised model that incorporates novel edge-wise affinity learning and pseudo label selection. Extensive experimental results on public benchmarks demonstrate that our method outperforms state-of-the-art graph matching and mixture graph matching and clustering approaches in both accuracy and efficiency. Source code will be made publicly available.
Abstract:There is an emerging line of research on multimodal instruction tuning, and a line of benchmarks have been proposed for evaluating these models recently. Instead of evaluating the models directly, in this paper we try to evaluate the Vision-Language Instruction-Tuning (VLIT) datasets themselves and further seek the way of building a dataset for developing an all-powerful VLIT model, which we believe could also be of utility for establishing a grounded protocol for benchmarking VLIT models. For effective analysis of VLIT datasets that remains an open question, we propose a tune-cross-evaluation paradigm: tuning on one dataset and evaluating on the others in turn. For each single tune-evaluation experiment set, we define the Meta Quality (MQ) as the mean score measured by a series of caption metrics including BLEU, METEOR, and ROUGE-L to quantify the quality of a certain dataset or a sample. On this basis, to evaluate the comprehensiveness of a dataset, we develop the Dataset Quality (DQ) covering all tune-evaluation sets. To lay the foundation for building a comprehensive dataset and developing an all-powerful model for practical applications, we further define the Sample Quality (SQ) to quantify the all-sided quality of each sample. Extensive experiments validate the rationality of the proposed evaluation paradigm. Based on the holistic evaluation, we build a new dataset, REVO-LION (REfining VisiOn-Language InstructiOn tuNing), by collecting samples with higher SQ from each dataset. With only half of the full data, the model trained on REVO-LION can achieve performance comparable to simply adding all VLIT datasets up. In addition to developing an all-powerful model, REVO-LION also includes an evaluation set, which is expected to serve as a convenient evaluation benchmark for future research.
Abstract:The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance.The IFM shows great potential as a data-agnostic model prune method. We have also drawn several interesting empirical findings regarding the defined feature complexity.
Abstract:Graph diffusion equations are intimately related to graph neural networks (GNNs) and have recently attracted attention as a principled framework for analyzing GNN dynamics, formalizing their expressive power, and justifying architectural choices. One key open questions in graph learning is the generalization capabilities of GNNs. A major limitation of current approaches hinges on the assumption that the graph topologies in the training and test sets come from the same distribution. In this paper, we make steps towards understanding the generalization of GNNs by exploring how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies. We first show deficiencies in the generalization capability of existing models built upon local diffusion on graphs, stemming from the exponential sensitivity to topology variation. Our subsequent analysis reveals the promise of non-local diffusion, which advocates for feature propagation over fully-connected latent graphs, under the assumption of a specific data-generating condition. In addition to these findings, we propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations that have a closed-form solution backed up with theoretical guarantees of desired generalization under topological distribution shifts. The new model, functioning as a versatile graph Transformer, demonstrates superior performance across a wide range of graph learning tasks.
Abstract:A long-standing goal in deep learning has been to characterize the learning behavior of black-box models in a more interpretable manner. For graph neural networks (GNNs), considerable advances have been made in formalizing what functions they can represent, however it remains less clear whether and how GNNs learn desired functions during the optimization process. To fill this critical gap, we study the learning dynamics of GNNs in function space via the analytic framework of overparameterization. In particular, we find that the seemingly complicated training process of GNNs can be re-cast into a more familiar label propagation framework, due to the graph inductive bias implicit in this process. From this vantage point, we provide explanations for why the learned GNN functions successfully generalize and for their pathological behavior on heterophilic graphs, which are consistent with observations. Practically, sparsifying and implementing the learning dynamics lead to a minimalist semi-supervised learning algorithm with the efficiency of classic algorithms and the effectiveness of modern GNNs.