Abstract:Unified Multimodal understanding and generation Models (UMMs) have demonstrated remarkable capabilities in both understanding and generation tasks. However, we identify a vulnerability arising from the generation-understanding coupling in UMMs. The attackers can use the generative function to craft an information-rich adversarial image and then leverage the understanding function to absorb it in a single pass, which we call Cross-Modal Generative Injection (CMGI). Current attack methods on malicious instructions are often limited to a single modality while also relying on prompt rewriting with semantic drift, leaving the unique vulnerabilities of UMMs unexplored. We propose STaR-Attack, the first multi-turn jailbreak attack framework that exploits unique safety weaknesses of UMMs without semantic drift. Specifically, our method defines a malicious event that is strongly correlated with the target query within a spatio-temporal context. Using the three-act narrative theory, STaR-Attack generates the pre-event and the post-event scenes while concealing the malicious event as the hidden climax. When executing the attack strategy, the opening two rounds exploit the UMM's generative ability to produce images for these scenes. Subsequently, an image-based question guessing and answering game is introduced by exploiting the understanding capability. STaR-Attack embeds the original malicious question among benign candidates, forcing the model to select and answer the most relevant one given the narrative context. Extensive experiments show that STaR-Attack consistently surpasses prior approaches, achieving up to 93.06% ASR on Gemini-2.0-Flash and surpasses the strongest prior baseline, FlipAttack. Our work uncovers a critical yet underdeveloped vulnerability and highlights the need for safety alignments in UMMs.
Abstract:Recent advances in Large Vision-Language Models (LVLMs) have significantly improve performance in image comprehension tasks, such as formatted charts and rich-content images. Yet, Graphical User Interface (GUI) pose a greater challenge due to their structured format and detailed textual information. Existing LVLMs often overly depend on internal knowledge and neglect image content, resulting in hallucinations and incorrect responses in GUI comprehension.To address these issues, we introduce VGA, a fine-tuned model designed for comprehensive GUI understanding. Our model aims to enhance the interpretation of visual data of GUI and reduce hallucinations. We first construct a Vision Question Answering (VQA) dataset of 63.8k high-quality examples with our propose Referent Method, which ensures the model's responses are highly depend on visual content within the image. We then design a two-stage fine-tuning method called Foundation and Advanced Comprehension (FAC) to enhance both the model's ability to extract information from image content and alignment with human intent. Experiments show that our approach enhances the model's ability to extract information from images and achieves state-of-the-art results in GUI understanding tasks. Our dataset and fine-tuning script will be released soon.