Abstract:This paper investigates the design of distributed precoding for multi-satellite massive MIMO transmissions. We first conduct a detailed analysis of the transceiver model, in which delay and Doppler precompensation is introduced to ensure coherent transmission. In this analysis, we examine the impact of precompensation errors on the transmission model, emphasize the near-independence of inter-satellite interference, and ultimately derive the received signal model. Based on such signal model, we formulate an approximate expected rate maximization problem that considers both statistical channel state information (sCSI) and compensation errors. Unlike conventional approaches that recast such problems as weighted minimum mean square error (WMMSE) minimization, we demonstrate that this transformation fails to maintain equivalence in the considered scenario. To address this, we introduce an equivalent covariance decomposition-based WMMSE (CDWMMSE) formulation derived based on channel covariance matrix decomposition. Taking advantage of the channel characteristics, we develop a low-complexity decomposition method and propose an optimization algorithm. To further reduce computational complexity, we introduce a model-driven scalable deep learning (DL) approach that leverages the equivariance of the mapping from sCSI to the unknown variables in the optimal closed-form solution, enhancing performance through novel dense Transformer network and scaling-invariant loss function design. Simulation results validate the effectiveness and robustness of the proposed method in some practical scenarios. We also demonstrate that the DL approach can adapt to dynamic settings with varying numbers of users and satellites.
Abstract:The rapid advancement of generative image technology has introduced significant security concerns, particularly in the domain of face generation detection. This paper investigates the vulnerabilities of current AI-generated face detection systems. Our study reveals that while existing detection methods often achieve high accuracy under standard conditions, they exhibit limited robustness against adversarial attacks. To address these challenges, we propose an approach that integrates adversarial training to mitigate the impact of adversarial examples. Furthermore, we utilize diffusion inversion and reconstruction to further enhance detection robustness. Experimental results demonstrate that minor adversarial perturbations can easily bypass existing detection systems, but our method significantly improves the robustness of these systems. Additionally, we provide an in-depth analysis of adversarial and benign examples, offering insights into the intrinsic characteristics of AI-generated content. All associated code will be made publicly available in a dedicated repository to facilitate further research and verification.
Abstract:Visual domain adaptation aims to learn discriminative and domain-invariant representation for an unlabeled target domain by leveraging knowledge from a labeled source domain. Partial domain adaptation (PDA) is a general and practical scenario in which the target label space is a subset of the source one. The challenges of PDA exist due to not only domain shift but also the non-identical label spaces of domains. In this paper, a Soft-masked Semi-dual Optimal Transport (SSOT) method is proposed to deal with the PDA problem. Specifically, the class weights of domains are estimated, and then a reweighed source domain is constructed, which is favorable in conducting class-conditional distribution matching with the target domain. A soft-masked transport distance matrix is constructed by category predictions, which will enhance the class-oriented representation ability of optimal transport in the shared feature space. To deal with large-scale optimal transport problems, the semi-dual formulation of the entropy-regularized Kantorovich problem is employed since it can be optimized by gradient-based algorithms. Further, a neural network is exploited to approximate the Kantorovich potential due to its strong fitting ability. This network parametrization also allows the generalization of the dual variable outside the supports of the input distribution. The SSOT model is built upon neural networks, which can be optimized alternately in an end-to-end manner. Extensive experiments are conducted on four benchmark datasets to demonstrate the effectiveness of SSOT.
Abstract:Foundation medical segmentation models, with MedSAM being the most popular, have achieved promising performance across organs and lesions. However, MedSAM still suffers from compromised performance on specific lesions with intricate structures and appearance, as well as bounding box prompt-induced perturbations. Although current test-time adaptation (TTA) methods for medical image segmentation may tackle this issue, partial (e.g., batch normalization) or whole parametric updates restrict their effectiveness due to limited update signals or catastrophic forgetting in large models. Meanwhile, these approaches ignore the computational complexity during adaptation, which is particularly significant for modern foundation models. To this end, our theoretical analyses reveal that directly refining image embeddings is feasible to approach the same goal as parametric updates under the MedSAM architecture, which enables us to realize high computational efficiency and segmentation performance without the risk of catastrophic forgetting. Under this framework, we propose to encourage maximizing factorized conditional probabilities of the posterior prediction probability using a proposed distribution-approximated latent conditional random field loss combined with an entropy minimization loss. Experiments show that we achieve about 3\% Dice score improvements across three datasets while reducing computational complexity by over 7 times.
Abstract:The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.
Abstract:3D fluorescence microscopy is essential for understanding fundamental life processes through long-term live-cell imaging. However, due to inherent issues in imaging principles, it faces significant challenges including spatially varying noise and anisotropic resolution, where the axial resolution lags behind the lateral resolution up to 4.5 times. Meanwhile, laser power is kept low to maintain cell viability, leading to inaccessible low-noise and high-resolution paired ground truth (GT). To tackle these limitations, a dual Cycle-consistent Diffusion is proposed to effectively mine intra-volume imaging priors within 3D cell volumes in an unsupervised manner, i.e., Volume Tells (VTCD), achieving de-noising and super-resolution (SR) simultaneously. Specifically, a spatially iso-distributed denoiser is designed to exploit the noise distribution consistency between adjacent low-noise and high-noise regions within the 3D cell volume, suppressing the spatially varying noise. Then, in light of the structural consistency of the cell volume, a cross-plane global-propagation SR module propagates high-resolution details from the XY plane into adjacent regions in the XZ and YZ planes, progressively enhancing resolution across the entire 3D cell volume. Experimental results on 10 in vivo cellular dataset demonstrate high improvements in both denoising and super-resolution, with axial resolution enhanced from ~ 430 nm to ~ 90 nm.
Abstract:Latent space matching, which consists of matching distributions of features in latent space, is a crucial component for tasks such as adversarial attacks and defenses, domain adaptation, and generative modelling. Metrics for probability measures, such as Wasserstein and maximum mean discrepancy, are commonly used to quantify the differences between such distributions. However, these are often costly to compute, or do not appropriately take the geometric and topological features of the distributions into consideration. Persistent homology is a tool from topological data analysis which quantifies the multi-scale topological structure of point clouds, and has recently been used as a topological regularizer in learning tasks. However, computation costs preclude larger scale computations, and discontinuities in the gradient lead to unstable training behavior such as in adversarial tasks. We propose the use of principal persistence measures, based on computing the persistent homology of a large number of small subsamples, as a topological regularizer. We provide a parallelized GPU implementation of this regularizer, and prove that gradients are continuous for smooth densities. Furthermore, we demonstrate the efficacy of this regularizer on shape matching, image generation, and semi-supervised learning tasks, opening the door towards a scalable regularizer for topological features.
Abstract:The attention mechanism is the key to the success of transformers in different machine learning tasks. However, the quadratic complexity with respect to the sequence length of the vanilla softmax-based attention mechanism becomes the major bottleneck for the application of long sequence tasks, such as vision tasks. Although various efficient linear attention mechanisms have been proposed, they need to sacrifice performance to achieve high efficiency. What's more, memory-efficient methods, such as FlashAttention-1-3, still have quadratic computation complexity which can be further improved. In this paper, we propose a novel efficient linear fast attention (ELFATT) mechanism to achieve low memory input/output operations, linear computational complexity, and high performance at the same time. ELFATT offers 4-7x speedups over the vanilla softmax-based attention mechanism in high-resolution vision tasks without losing performance. ELFATT is FlashAttention friendly. Using FlashAttention-2 acceleration, ELFATT still offers 2-3x speedups over the vanilla softmax-based attention mechanism on high-resolution vision tasks without losing performance. Even on edge GPUs, ELFATT still offers 1.6x to 2.0x speedups compared to state-of-the-art attention mechanisms in various power modes from 5W to 60W. The code of ELFATT is available at [https://github.com/Alicewithrabbit/ELFATT].
Abstract:We have recently witnessed that ``Intelligence" and `` Compression" are the two sides of the same coin, where the language large model (LLM) with unprecedented intelligence is a general-purpose lossless compressor for various data modalities. This attribute particularly appeals to the lossless image compression community, given the increasing need to compress high-resolution images in the current streaming media era. Consequently, a spontaneous envision emerges: Can the compression performance of the LLM elevate lossless image compression to new heights? However, our findings indicate that the naive application of LLM-based lossless image compressors suffers from a considerable performance gap compared with existing state-of-the-art (SOTA) codecs on common benchmark datasets. In light of this, we are dedicated to fulfilling the unprecedented intelligence (compression) capacity of the LLM for lossless image compression tasks, thereby bridging the gap between theoretical and practical compression performance. Specifically, we propose P$^{2}$-LLM, a next-pixel prediction-based LLM, which integrates various elaborated insights and methodologies, \textit{e.g.,} pixel-level priors, the in-context ability of LLM, and a pixel-level semantic preservation strategy, to enhance the understanding capacity of pixel sequences for better next-pixel predictions. Extensive experiments on benchmark datasets demonstrate that P$^{2}$-LLM can beat SOTA classical and learned codecs.
Abstract:Ensuring safety in both autonomous driving and advanced driver-assistance systems (ADAS) depends critically on the efficient deployment of traffic sign recognition technology. While current methods show effectiveness, they often compromise between speed and accuracy. To address this issue, we present a novel real-time and efficient road sign detection network, YOLO-TS. This network significantly improves performance by optimizing the receptive fields of multi-scale feature maps to align more closely with the size distribution of traffic signs in various datasets. Moreover, our innovative feature-fusion strategy, leveraging the flexibility of Anchor-Free methods, allows for multi-scale object detection on a high-resolution feature map abundant in contextual information, achieving remarkable enhancements in both accuracy and speed. To mitigate the adverse effects of the grid pattern caused by dilated convolutions on the detection of smaller objects, we have devised a unique module that not only mitigates this grid effect but also widens the receptive field to encompass an extensive range of spatial contextual information, thus boosting the efficiency of information usage. Evaluation on challenging public datasets, TT100K and CCTSDB2021, demonstrates that YOLO-TS surpasses existing state-of-the-art methods in terms of both accuracy and speed. The code for our method will be available.