Abstract:The emergence of Multimodal Large Language Models (MLRMs) has enabled sophisticated visual reasoning capabilities by integrating reinforcement learning and Chain-of-Thought (CoT) supervision. However, while these enhanced reasoning capabilities improve performance, they also introduce new and underexplored safety risks. In this work, we systematically investigate the security implications of advanced visual reasoning in MLRMs. Our analysis reveals a fundamental trade-off: as visual reasoning improves, models become more vulnerable to jailbreak attacks. Motivated by this critical finding, we introduce VisCRA (Visual Chain Reasoning Attack), a novel jailbreak framework that exploits the visual reasoning chains to bypass safety mechanisms. VisCRA combines targeted visual attention masking with a two-stage reasoning induction strategy to precisely control harmful outputs. Extensive experiments demonstrate VisCRA's significant effectiveness, achieving high attack success rates on leading closed-source MLRMs: 76.48% on Gemini 2.0 Flash Thinking, 68.56% on QvQ-Max, and 56.60% on GPT-4o. Our findings highlight a critical insight: the very capability that empowers MLRMs -- their visual reasoning -- can also serve as an attack vector, posing significant security risks.
Abstract:Neighborhood-aware tokenized graph Transformers have recently shown great potential for node classification tasks. Despite their effectiveness, our in-depth analysis of neighborhood tokens reveals two critical limitations in the existing paradigm. First, current neighborhood token generation methods fail to adequately capture attribute correlations within a neighborhood. Second, the conventional self-attention mechanism suffers from attention diversion when processing neighborhood tokens, where high-hop neighborhoods receive disproportionate focus, severely disrupting information interactions between the target node and its neighborhood tokens. To address these challenges, we propose DAM-GT, Dual positional encoding-based Attention Masking graph Transformer. DAM-GT introduces a novel dual positional encoding scheme that incorporates attribute-aware encoding via an attribute clustering strategy, effectively preserving node correlations in both topological and attribute spaces. In addition, DAM-GT formulates a new attention mechanism with a simple yet effective masking strategy to guide interactions between target nodes and their neighborhood tokens, overcoming the issue of attention diversion. Extensive experiments on various graphs with different homophily levels as well as different scales demonstrate that DAM-GT consistently outperforms state-of-the-art methods in node classification tasks.
Abstract:Algorithms designed for routing problems typically rely on high-quality candidate edges to guide their search, aiming to reduce the search space and enhance the search efficiency. However, many existing algorithms, like the classical Lin-Kernighan-Helsgaun (LKH) algorithm for the Traveling Salesman Problem (TSP), often use predetermined candidate edges that remain static throughout local searches. This rigidity could cause the algorithm to get trapped in local optima, limiting its potential to find better solutions. To address this issue, we propose expanding the candidate sets to include other promising edges, providing them an opportunity for selection. Specifically, we incorporate multi-armed bandit models to dynamically select the most suitable candidate edges in each iteration, enabling LKH to make smarter choices and lead to improved solutions. Extensive experiments on multiple TSP benchmarks show the excellent performance of our method. Moreover, we employ this bandit-based method to LKH-3, an extension of LKH tailored for solving various TSP variant problems, and our method also significantly enhances LKH-3's performance across typical TSP variants.
Abstract:Class-Incremental Learning (CIL) is a critical capability for real-world applications, enabling learning systems to adapt to new tasks while retaining knowledge from previous ones. Recent advancements in pre-trained models (PTMs) have significantly advanced the field of CIL, demonstrating superior performance over traditional methods. However, understanding how features evolve and are distributed across incremental tasks remains an open challenge. In this paper, we propose a novel approach to modeling feature evolution in PTM-based CIL through the lens of neural collapse (NC), a striking phenomenon observed in the final phase of training, which leads to a well-separated, equiangular feature space. We explore the connection between NC and CIL effectiveness, showing that aligning feature distributions with the NC geometry enhances the ability to capture the dynamic behavior of continual learning. Based on this insight, we introduce Neural Collapse-inspired Pre-Trained Model-based CIL (NCPTM-CIL), a method that dynamically adjusts the feature space to conform to the elegant NC structure, thereby enhancing the continual learning process. Extensive experiments demonstrate that NCPTM-CIL outperforms state-of-the-art methods across four benchmark datasets. Notably, when initialized with ViT-B/16-IN1K, NCPTM-CIL surpasses the runner-up method by 6.73% on VTAB, 1.25% on CIFAR-100, and 2.5% on OmniBenchmark.
Abstract:Self-driving laboratories have begun to replace human experimenters in performing single experimental skills or predetermined experimental protocols. However, as the pace of idea iteration in scientific research has been intensified by Artificial Intelligence, the demand for rapid design of new protocols for new discoveries become evident. Efforts to automate protocol design have been initiated, but the capabilities of knowledge-based machine designers, such as Large Language Models, have not been fully elicited, probably for the absence of a systematic representation of experimental knowledge, as opposed to isolated, flatten pieces of information. To tackle this issue, we propose a multi-faceted, multi-scale representation, where instance actions, generalized operations, and product flow models are hierarchically encapsulated using Domain-Specific Languages. We further develop a data-driven algorithm based on non-parametric modeling that autonomously customizes these representations for specific domains. The proposed representation is equipped with various machine designers to manage protocol design tasks, including planning, modification, and adjustment. The results demonstrate that the proposed method could effectively complement Large Language Models in the protocol design process, serving as an auxiliary module in the realm of machine-assisted scientific exploration.
Abstract:Neural solvers have shown significant potential in solving the Traveling Salesman Problem (TSP), yet current approaches face significant challenges. Supervised learning (SL)-based solvers require large amounts of high-quality labeled data, while reinforcement learning (RL)-based solvers, though less dependent on such data, often suffer from inefficiencies. To address these limitations, we propose LocalEscaper, a novel weakly-supervised learning framework for large-scale TSP. LocalEscaper effectively combines the advantages of both SL and RL, enabling effective training on datasets with low-quality labels. To further enhance solution quality, we introduce a regional reconstruction strategy, which mitigates the problem of local optima, a common issue in existing local reconstruction methods. Additionally, we propose a linear-complexity attention mechanism that reduces computational overhead, enabling the efficient solution of large-scale TSPs without sacrificing performance. Experimental results on both synthetic and real-world datasets demonstrate that LocalEscaper outperforms existing neural solvers, achieving state-of-the-art results. Notably, it sets a new benchmark for scalability and efficiency, solving TSP instances with up to 50,000 cities.
Abstract:Node tokenized graph Transformers (GTs) have shown promising performance in node classification. The generation of token sequences is the key module in existing tokenized GTs which transforms the input graph into token sequences, facilitating the node representation learning via Transformer. In this paper, we observe that the generations of token sequences in existing GTs only focus on the first-order neighbors on the constructed similarity graphs, which leads to the limited usage of nodes to generate diverse token sequences, further restricting the potential of tokenized GTs for node classification. To this end, we propose a new method termed SwapGT. SwapGT first introduces a novel token swapping operation based on the characteristics of token sequences that fully leverages the semantic relevance of nodes to generate more informative token sequences. Then, SwapGT leverages a Transformer-based backbone to learn node representations from the generated token sequences. Moreover, SwapGT develops a center alignment loss to constrain the representation learning from multiple token sequences, further enhancing the model performance. Extensive empirical results on various datasets showcase the superiority of SwapGT for node classification.
Abstract:Recently, zeroth-order (ZO) optimization plays an essential role in scenarios where gradient information is inaccessible or unaffordable, such as black-box systems and resource-constrained environments. While existing adaptive methods such as ZO-AdaMM have shown promise, they are fundamentally limited by their underutilization of moment information during optimization, usually resulting in underperforming convergence. To overcome these limitations, this paper introduces Refined Adaptive Zeroth-Order Optimization (R-AdaZO). Specifically, we first show the untapped variance reduction effect of first moment estimate on ZO gradient estimation, which improves the accuracy and stability of ZO updates. We then refine the second moment estimate based on these variance-reduced gradient estimates to better capture the geometry of the optimization landscape, enabling a more effective scaling of ZO updates. We present rigorous theoretical analysis to show (I) the first analysis to the variance reduction of first moment estimate in ZO optimization, (II) the improved second moment estimates with a more accurate approximation of its variance-free ideal, (III) the first variance-aware convergence framework for adaptive ZO methods, which may be of independent interest, and (IV) the faster convergence of R-AdaZO than existing baselines like ZO-AdaMM. Our extensive experiments, including synthetic problems, black-box adversarial attack, and memory-efficient fine-tuning of large language models (LLMs), further verify the superior convergence of R-AdaZO, indicating that R-AdaZO offers an improved solution for real-world ZO optimization challenges.
Abstract:Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.
Abstract:The Lin-Kernighan-Helsguan (LKH) heuristic is a classic local search algorithm for the Traveling Salesman Problem (TSP). LKH introduces an $\alpha$-value to replace the traditional distance metric for evaluating the edge quality, which leads to a significant improvement. However, we observe that the $\alpha$-value does not make full use of the historical information during the search, and single guiding information often makes LKH hard to escape from some local optima. To address the above issues, we propose a novel way to extract backbone information during the TSP local search process, which is dynamic and can be updated once a local optimal solution is found. We further propose to combine backbone information, $\alpha$-value, and distance to evaluate the edge quality so as to guide the search. Moreover, we abstract their different combinations to arms in a multi-armed bandit (MAB) and use an MAB model to help the algorithm select an appropriate evaluation metric dynamically. Both the backbone information and MAB can provide diverse guiding information and learn from the search history to suggest the best metric. We apply our methods to LKH and LKH-3, which is an extension version of LKH that can be used to solve about 40 variant problems of TSP and Vehicle Routing Problem (VRP). Extensive experiments show the excellent performance and generalization capability of our proposed method, significantly improving LKH for TSP and LKH-3 for two representative TSP and VRP variants, the Colored TSP (CTSP) and Capacitated VRP with Time Windows (CVRPTW).