Abstract:Whole-body audio-driven avatar pose and expression generation is a critical task for creating lifelike digital humans and enhancing the capabilities of interactive virtual agents, with wide-ranging applications in virtual reality, digital entertainment, and remote communication. Existing approaches often generate audio-driven facial expressions and gestures independently, which introduces a significant limitation: the lack of seamless coordination between facial and gestural elements, resulting in less natural and cohesive animations. To address this limitation, we propose AsynFusion, a novel framework that leverages diffusion transformers to achieve harmonious expression and gesture synthesis. The proposed method is built upon a dual-branch DiT architecture, which enables the parallel generation of facial expressions and gestures. Within the model, we introduce a Cooperative Synchronization Module to facilitate bidirectional feature interaction between the two modalities, and an Asynchronous LCM Sampling strategy to reduce computational overhead while maintaining high-quality outputs. Extensive experiments demonstrate that AsynFusion achieves state-of-the-art performance in generating real-time, synchronized whole-body animations, consistently outperforming existing methods in both quantitative and qualitative evaluations.
Abstract:Using the exact gradients of the rewards to directly optimize policy parameters via backpropagation-through-time (BPTT) enables high training performance for quadrotor tasks. However, designing a fully differentiable reward architecture is often challenging. Partially differentiable rewards will result in biased gradient propagation that degrades training performance. To overcome this limitation, we propose Amended Backpropagation-through-Time (ABPT), a novel approach that mitigates gradient bias while preserving the training efficiency of BPTT. ABPT combines 0-step and N-step returns, effectively reducing the bias by leveraging value gradients from the learned Q-value function. Additionally, it adopts entropy regularization and state initialization mechanisms to encourage exploration during training. We evaluate ABPT on four representative quadrotor flight tasks. Experimental results demonstrate that ABPT converges significantly faster and achieves higher ultimate rewards than existing learning algorithms, particularly in tasks involving partially differentiable rewards.
Abstract:Depth estimation is a cornerstone of perception in autonomous driving and robotic systems. The considerable cost and relatively sparse data acquisition of LiDAR systems have led to the exploration of cost-effective alternatives, notably, self-supervised depth estimation. Nevertheless, current self-supervised depth estimation methods grapple with several limitations: (1) the failure to adequately leverage informative multi-camera views. (2) the limited capacity to handle dynamic objects effectively. To address these challenges, we present BEVScope, an innovative approach to self-supervised depth estimation that harnesses Bird's-Eye-View (BEV) features. Concurrently, we propose an adaptive loss function, specifically designed to mitigate the complexities associated with moving objects. Empirical evaluations conducted on the Nuscenes dataset validate our approach, demonstrating competitive performance. Code will be released at https://github.com/myc634/BEVScope.