Macquarie University
Abstract:Different from the current node-level anomaly detection task, the goal of graph-level anomaly detection is to find abnormal graphs that significantly differ from others in a graph set. Due to the scarcity of research on the work of graph-level anomaly detection, the detailed description of graph-level anomaly is insufficient. Furthermore, existing works focus on capturing anomalous graph information to learn better graph representations, but they ignore the importance of an effective anomaly score function for evaluating abnormal graphs. Thus, in this work, we first define anomalous graph information including node and graph property anomalies in a graph set and adopt node-level and graph-level information differences to identify them, respectively. Then, we introduce a discriminative graph-level anomaly detection framework with dual-students-teacher model, where the teacher model with a heuristic loss are trained to make graph representations more divergent. Then, two competing student models trained by normal and abnormal graphs respectively fit graph representations of the teacher model in terms of node-level and graph-level representation perspectives. Finally, we combine representation errors between two student models to discriminatively distinguish anomalous graphs. Extensive experiment analysis demonstrates that our method is effective for the graph-level anomaly detection task on graph datasets in the real world.
Abstract:Learning unbiased node representations for imbalanced samples in the graph has become a more remarkable and important topic. For the graph, a significant challenge is that the topological properties of the nodes (e.g., locations, roles) are unbalanced (topology-imbalance), other than the number of training labeled nodes (quantity-imbalance). Existing studies on topology-imbalance focus on the location or the local neighborhood structure of nodes, ignoring the global underlying hierarchical properties of the graph, i.e., hierarchy. In the real-world scenario, the hierarchical structure of graph data reveals important topological properties of graphs and is relevant to a wide range of applications. We find that training labeled nodes with different hierarchical properties have a significant impact on the node classification tasks and confirm it in our experiments. It is well known that hyperbolic geometry has a unique advantage in representing the hierarchical structure of graphs. Therefore, we attempt to explore the hierarchy-imbalance issue for node classification of graph neural networks with a novelty perspective of hyperbolic geometry, including its characteristics and causes. Then, we propose a novel hyperbolic geometric hierarchy-imbalance learning framework, named HyperIMBA, to alleviate the hierarchy-imbalance issue caused by uneven hierarchy-levels and cross-hierarchy connectivity patterns of labeled nodes.Extensive experimental results demonstrate the superior effectiveness of HyperIMBA for hierarchy-imbalance node classification tasks.
Abstract:Graph Neural Networks (GNNs) are de facto solutions to structural data learning. However, it is susceptible to low-quality and unreliable structure, which has been a norm rather than an exception in real-world graphs. Existing graph structure learning (GSL) frameworks still lack robustness and interpretability. This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree. Particularly, we exploit the one-dimensional structural entropy to maximize embedded information content when auxiliary neighbourhood attributes are fused to enhance the original graph. A new scheme of constructing optimal encoding trees is proposed to minimize the uncertainty and noises in the graph whilst assuring proper community partition in hierarchical abstraction. We present a novel sample-based mechanism for restoring the graph structure via node structural entropy distribution. It increases the connectivity among nodes with larger uncertainty in lower-level communities. SE-GSL is compatible with various GNN models and enhances the robustness towards noisy and heterophily structures. Extensive experiments show significant improvements in the effectiveness and robustness of structure learning and node representation learning.
Abstract:Social Internet of Things (SIoT), a promising and emerging paradigm that injects the notion of social networking into smart objects (i.e., things), paving the way for the next generation of Internet of Things. However, due to the risks and uncertainty, a crucial and urgent problem to be settled is establishing reliable relationships within SIoT, that is, trust evaluation. Graph neural networks for trust evaluation typically adopt a straightforward way such as one-hot or node2vec to comprehend node characteristics, which ignores the valuable semantic knowledge attached to nodes. Moreover, the underlying structure of SIoT is usually complex, including both the heterogeneous graph structure and pairwise trust relationships, which renders hard to preserve the properties of SIoT trust during information propagation. To address these aforementioned problems, we propose a novel knowledge-enhanced graph neural network (KGTrust) for better trust evaluation in SIoT. Specifically, we first extract useful knowledge from users' comment behaviors and external structured triples related to object descriptions, in order to gain a deeper insight into the semantics of users and objects. Furthermore, we introduce a discriminative convolutional layer that utilizes heterogeneous graph structure, node semantics, and augmented trust relationships to learn node embeddings from the perspective of a user as a trustor or a trustee, effectively capturing multi-aspect properties of SIoT trust during information propagation. Finally, a trust prediction layer is developed to estimate the trust relationships between pairwise nodes. Extensive experiments on three public datasets illustrate the superior performance of KGTrust over state-of-the-art methods.
Abstract:Social events reflect the dynamics of society and, here, natural disasters and emergencies receive significant attention. The timely detection of these events can provide organisations and individuals with valuable information to reduce or avoid losses. However, due to the complex heterogeneities of the content and structure of social media, existing models can only learn limited information; large amounts of semantic and structural information are ignored. In addition, due to high labour costs, it is rare for social media datasets to include high-quality labels, which also makes it challenging for models to learn information from social media. In this study, we propose two hyperbolic graph representation-based methods for detecting social events from heterogeneous social media environments. For cases where a dataset has labels, we designed a Hyperbolic Social Event Detection (HSED) model that converts complex social information into a unified social message graph. This model addresses the heterogeneity of social media, and, with this graph, the information in social media can be used to capture structural information based on the properties of hyperbolic space. For cases where the dataset is unlabelled, we designed an Unsupervised Hyperbolic Social Event Detection (UHSED). This model is based on the HSED model but includes graph contrastive learning to make it work in unlabelled scenarios. Extensive experiments demonstrate the superiority of the proposed approaches.
Abstract:The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.
Abstract:As large-scale graphs become more widespread today, it exposes computational challenges to extract, process, and interpret large graph data. It is therefore natural to search for ways to summarize the original graph while maintaining its key characteristics. In this survey, we outline the most current progress of deep learning on graphs for graph summarization explicitly concentrating on Graph Neural Networks (GNNs) methods. We structure the paper into four categories, including graph recurrent networks, graph convolutional networks, graph autoencoders, and graph attention networks. We also discuss a new booming line of research which is elaborating on using graph reinforcement learning for evaluating and improving the quality of graph summaries. Finally, we conclude this survey and discuss a number of open research challenges that would motivate further study in this area.
Abstract:Automatic knowledge graph construction aims to manufacture structured human knowledge. To this end, much effort has historically been spent extracting informative fact patterns from different data sources. However, more recently, research interest has shifted to acquiring conceptualized structured knowledge beyond informative data. In addition, researchers have also been exploring new ways of handling sophisticated construction tasks in diversified scenarios. Thus, there is a demand for a systematic review of paradigms to organize knowledge structures beyond data-level mentions. To meet this demand, we comprehensively survey more than 300 methods to summarize the latest developments in knowledge graph construction. A knowledge graph is built in three steps: knowledge acquisition, knowledge refinement, and knowledge evolution. The processes of knowledge acquisition are reviewed in detail, including obtaining entities with fine-grained types and their conceptual linkages to knowledge graphs; resolving coreferences; and extracting entity relationships in complex scenarios. The survey covers models for knowledge refinement, including knowledge graph completion, and knowledge fusion. Methods to handle knowledge evolution are also systematically presented, including condition knowledge acquisition, condition knowledge graph completion, and knowledge dynamic. We present the paradigms to compare the distinction among these methods along the axis of the data environment, motivation, and architecture. Additionally, we also provide briefs on accessible resources that can help readers to develop practical knowledge graph systems. The survey concludes with discussions on the challenges and possible directions for future exploration.
Abstract:Contrastive Learning (CL) has been proved to be a powerful self-supervised approach for a wide range of domains, including computer vision and graph representation learning. However, the incremental learning issue of CL has rarely been studied, which brings the limitation in applying it to real-world applications. Contrastive learning identifies the samples with the negative ones from the noise distribution that changes in the incremental scenarios. Therefore, only fitting the change of data without noise distribution causes bias, and directly retraining results in low efficiency. To bridge this research gap, we propose a self-supervised Incremental Contrastive Learning (ICL) framework consisting of (i) a novel Incremental InfoNCE (NCE-II) loss function by estimating the change of noise distribution for old data to guarantee no bias with respect to the retraining, (ii) a meta-optimization with deep reinforced Learning Rate Learning (LRL) mechanism which can adaptively learn the learning rate according to the status of the training processes and achieve fast convergence which is critical for incremental learning. Theoretically, the proposed ICL is equivalent to retraining, which is based on solid mathematical derivation. In practice, extensive experiments in different domains demonstrate that, without retraining a new model, ICL achieves up to 16.7x training speedup and 16.8x faster convergence with competitive results.
Abstract:Graphs have a superior ability to represent relational data, like chemical compounds, proteins, and social networks. Hence, graph-level learning, which takes a set of graphs as input, has been applied to many tasks including comparison, regression, classification, and more. Traditional approaches to learning a set of graphs tend to rely on hand-crafted features, such as substructures. But while these methods benefit from good interpretability, they often suffer from computational bottlenecks as they cannot skirt the graph isomorphism problem. Conversely, deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and decoding graphs into low-dimensional representations. As a result, these deep graph learning methods have been responsible for many successes. Yet, there is no comprehensive survey that reviews graph-level learning starting with traditional learning and moving through to the deep learning approaches. This article fills this gap and frames the representative algorithms into a systematic taxonomy covering traditional learning, graph-level deep neural networks, graph-level graph neural networks, and graph pooling. To ensure a thoroughly comprehensive survey, the evolutions, interactions, and communications between methods from four different branches of development are also examined. This is followed by a brief review of the benchmark data sets, evaluation metrics, and common downstream applications. The survey concludes with 13 future directions of necessary research that will help to overcome the challenges facing this booming field.