Abstract:Software automation has long been a central goal of software engineering, striving for software development that proceeds without human intervention. Recent efforts have leveraged Artificial Intelligence (AI) to advance software automation with notable progress. However, current AI functions primarily as assistants to human developers, leaving software development still dependent on explicit human intervention. This raises a fundamental question: Can AI move beyond its role as an assistant to become a core component of software, thereby enabling genuine software automation? To investigate this vision, we introduce AI-Driven Self-Evolving Software, a new form of software that evolves continuously through direct interaction with users. We demonstrate the feasibility of this idea with a lightweight prototype built on a multi-agent architecture that autonomously interprets user requirements, generates and validates code, and integrates new functionalities. Case studies across multiple representative scenarios show that the prototype can reliably construct and reuse functionality, providing early evidence that such software systems can scale to more sophisticated applications and pave the way toward truly automated software development. We make code and cases in this work publicly available at https://anonymous.4open.science/r/live-software.
Abstract:Large Vision-Language Models (LVLMs) have achieved impressive progress across various applications but remain vulnerable to malicious queries that exploit the visual modality. Existing alignment approaches typically fail to resist malicious queries while preserving utility on benign ones effectively. To address these challenges, we propose Deep Aligned Visual Safety Prompt (DAVSP), which is built upon two key innovations. First, we introduce the Visual Safety Prompt, which appends a trainable padding region around the input image. It preserves visual features and expands the optimization space. Second, we propose Deep Alignment, a novel approach to train the visual safety prompt through supervision in the model's activation space. It enhances the inherent ability of LVLMs to perceive malicious queries, achieving deeper alignment than prior works. Extensive experiments across five benchmarks on two representative LVLMs demonstrate that DAVSP effectively resists malicious queries while preserving benign input utility. Furthermore, DAVSP exhibits great cross-model generation ability. Ablation studies further reveal that both the Visual Safety Prompt and Deep Alignment are essential components, jointly contributing to its overall effectiveness. The code is publicly available at https://github.com/zhangyitonggg/DAVSP.
Abstract:In neuroscience research, achieving single-neuron matching across different imaging modalities is critical for understanding the relationship between neuronal structure and function. However, modality gaps and limited annotations present significant challenges. We propose a few-shot metric learning method with a dual-channel attention mechanism and a pretrained vision transformer to enable robust cross-modal neuron identification. The local and global channels extract soma morphology and fiber context, respectively, and a gating mechanism fuses their outputs. To enhance the model's fine-grained discrimination capability, we introduce a hard sample mining strategy based on the MultiSimilarityMiner algorithm, along with the Circle Loss function. Experiments on two-photon and fMOST datasets demonstrate superior Top-K accuracy and recall compared to existing methods. Ablation studies and t-SNE visualizations validate the effectiveness of each module. The method also achieves a favorable trade-off between accuracy and training efficiency under different fine-tuning strategies. These results suggest that the proposed approach offers a promising technical solution for accurate single-cell level matching and multimodal neuroimaging integration.