Abstract:Interview performance assessment is essential for determining candidates' suitability for professional positions. To ensure holistic and fair evaluations, we propose a novel and comprehensive framework that explores ``365'' aspects of interview performance by integrating \textit{three} modalities (video, audio, and text), \textit{six} responses per candidate, and \textit{five} key evaluation dimensions. The framework employs modality-specific feature extractors to encode heterogeneous data streams and subsequently fused via a Shared Compression Multilayer Perceptron. This module compresses multimodal embeddings into a unified latent space, facilitating efficient feature interaction. To enhance prediction robustness, we incorporate a two-level ensemble learning strategy: (1) independent regression heads predict scores for each response, and (2) predictions are aggregated across responses using a mean-pooling mechanism to produce final scores for the five target dimensions. By listening to the unspoken, our approach captures both explicit and implicit cues from multimodal data, enabling comprehensive and unbiased assessments. Achieving a multi-dimensional average MSE of 0.1824, our framework secured first place in the AVI Challenge 2025, demonstrating its effectiveness and robustness in advancing automated and multimodal interview performance assessment. The full implementation is available at https://github.com/MSA-LMC/365Aspects.
Abstract:Metaphorical imagination, the ability to connect seemingly unrelated concepts, is fundamental to human cognition and communication. While understanding linguistic metaphors has advanced significantly, grasping multimodal metaphors, such as those found in internet memes, presents unique challenges due to their unconventional expressions and implied meanings. Existing methods for multimodal metaphor identification often struggle to bridge the gap between literal and figurative interpretations. Additionally, generative approaches that utilize large language models or text-to-image models, while promising, suffer from high computational costs. This paper introduces \textbf{C}oncept \textbf{D}rift \textbf{G}uided \textbf{L}ayerNorm \textbf{T}uning (\textbf{CDGLT}), a novel and training-efficient framework for multimodal metaphor identification. CDGLT incorporates two key innovations: (1) Concept Drift, a mechanism that leverages Spherical Linear Interpolation (SLERP) of cross-modal embeddings from a CLIP encoder to generate a new, divergent concept embedding. This drifted concept helps to alleviate the gap between literal features and the figurative task. (2) A prompt construction strategy, that adapts the method of feature extraction and fusion using pre-trained language models for the multimodal metaphor identification task. CDGLT achieves state-of-the-art performance on the MET-Meme benchmark while significantly reducing training costs compared to existing generative methods. Ablation studies demonstrate the effectiveness of both Concept Drift and our adapted LN Tuning approach. Our method represents a significant step towards efficient and accurate multimodal metaphor understanding. The code is available: \href{https://github.com/Qianvenh/CDGLT}{https://github.com/Qianvenh/CDGLT}.