Alert button
Picture for Jan S. Kirschke

Jan S. Kirschke

Alert button

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany

Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading

Add code
Bookmark button
Alert button
Mar 21, 2023
Matthias Keicher, Matan Atad, David Schinz, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Nassir Navab

Figure 1 for Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading
Figure 2 for Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading
Figure 3 for Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading
Figure 4 for Semantic Latent Space Regression of Diffusion Autoencoders for Vertebral Fracture Grading
Viaarxiv icon

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset

Add code
Bookmark button
Alert button
Jun 14, 2022
Moritz Roman Hernandez Petzsche, Ezequiel de la Rosa, Uta Hanning, Roland Wiest, Waldo Enrique Valenzuela Pinilla, Mauricio Reyes, Maria Ines Meyer, Sook-Lei Liew, Florian Kofler, Ivan Ezhov, David Robben, Alexander Hutton, Tassilo Friedrich, Teresa Zarth, Johannes Bürkle, The Anh Baran, Bjoern Menze, Gabriel Broocks, Lukas Meyer, Claus Zimmer, Tobias Boeckh-Behrens, Maria Berndt, Benno Ikenberg, Benedikt Wiestler, Jan S. Kirschke

Figure 1 for ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
Figure 2 for ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
Figure 3 for ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
Figure 4 for ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset
Viaarxiv icon

Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine

Add code
Bookmark button
Alert button
May 16, 2022
Bailiang Jian, Mohammad Farid Azampour, Francesca De Benetti, Johannes Oberreuter, Christina Bukas, Alexandra S. Gersing, Sarah C. Foreman, Anna-Sophia Dietrich, Jon Rischewski, Jan S. Kirschke, Nassir Navab, Thomas Wendler

Figure 1 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 2 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 3 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Figure 4 for Weakly-supervised Biomechanically-constrained CT/MRI Registration of the Spine
Viaarxiv icon

Interpretable Vertebral Fracture Diagnosis

Add code
Bookmark button
Alert button
Mar 30, 2022
Paul Engstler, Matthias Keicher, David Schinz, Kristina Mach, Alexandra S. Gersing, Sarah C. Foreman, Sophia S. Goller, Juergen Weissinger, Jon Rischewski, Anna-Sophia Dietrich, Benedikt Wiestler, Jan S. Kirschke, Ashkan Khakzar, Nassir Navab

Figure 1 for Interpretable Vertebral Fracture Diagnosis
Figure 2 for Interpretable Vertebral Fracture Diagnosis
Figure 3 for Interpretable Vertebral Fracture Diagnosis
Viaarxiv icon

Differentiable Deconvolution for Improved Stroke Perfusion Analysis

Add code
Bookmark button
Alert button
Mar 31, 2021
Ezequiel de la Rosa, David Robben, Diana M. Sima, Jan S. Kirschke, Bjoern Menze

Figure 1 for Differentiable Deconvolution for Improved Stroke Perfusion Analysis
Figure 2 for Differentiable Deconvolution for Improved Stroke Perfusion Analysis
Figure 3 for Differentiable Deconvolution for Improved Stroke Perfusion Analysis
Figure 4 for Differentiable Deconvolution for Improved Stroke Perfusion Analysis
Viaarxiv icon

Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning

Add code
Bookmark button
Alert button
Mar 23, 2021
Christina Bukas, Bailiang Jian, Luis F. Rodriguez Venegas, Francesca De Benetti, Sebastian Ruehling, Anjany Sekuboyina, Jens Gempt, Jan S. Kirschke, Marie Piraud, Johannes Oberreuter, Nassir Navab, Thomas Wendler

Figure 1 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 2 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 3 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Figure 4 for Patient-specific virtual spine straightening and vertebra inpainting: An automatic framework for osteoplasty planning
Viaarxiv icon

A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data

Add code
Bookmark button
Alert button
Mar 10, 2021
Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T. Löffler, Amirhossein Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, Thomas Baum, Benedikt Wiestler, Bjoern Menze, Rickmer Braren, Claus Zimmer, Jan S. Kirschke

Figure 1 for A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data
Figure 2 for A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data
Viaarxiv icon

AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning

Add code
Bookmark button
Alert button
Oct 04, 2020
Ezequiel de la Rosa, Diana M. Sima, Bjoern Menze, Jan S. Kirschke, David Robben

Figure 1 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 2 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 3 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 4 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Viaarxiv icon

Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement

Add code
Bookmark button
Alert button
Sep 27, 2020
Amirhossein Bayat, Suprosanna Shit, Adrian Kilian, Jürgen T. Liechtenstein, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement
Figure 2 for Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement
Figure 3 for Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement
Figure 4 for Cranial Implant Prediction using Low-Resolution 3D Shape Completion and High-Resolution 2D Refinement
Viaarxiv icon