Abstract:This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the unsupervised setting in most GAD studies with a fully unlabeled graph. As expected, we find that having access to these normal nodes helps enhance the detection performance of existing unsupervised GAD methods when they are adapted to the semi-supervised setting. However, their utilization of these normal nodes is limited. In this paper, we propose a novel Generative GAD approach (GGAD) for the semi-supervised scenario to better exploit the normal nodes. The key idea is to generate outlier nodes that assimilate anomaly nodes in both local structure and node representations for providing effective negative node samples in training a discriminative one-class classifier. There have been many generative anomaly detection approaches, but they are designed for non-graph data, and as a result, they fail to take account of the graph structure information. Our approach tackles this problem by generating graph structure-aware outlier nodes that have asymmetric affinity separability from normal nodes while being enforced to achieve egocentric closeness to normal nodes in the node representation space. Comprehensive experiments on four real-world datasets are performed to establish a benchmark for semi-supervised GAD and show that GGAD substantially outperforms state-of-the-art unsupervised and semi-supervised GAD methods with varying numbers of training normal nodes. Code will be made available at https://github.com/mala-lab/GGAD.
Abstract:Visual Anomaly Detection (VAD) endeavors to pinpoint deviations from the concept of normality in visual data, widely applied across diverse domains, e.g., industrial defect inspection, and medical lesion detection. This survey comprehensively examines recent advancements in VAD by identifying three primary challenges: 1) scarcity of training data, 2) diversity of visual modalities, and 3) complexity of hierarchical anomalies. Starting with a brief overview of the VAD background and its generic concept definitions, we progressively categorize, emphasize, and discuss the latest VAD progress from the perspective of sample number, data modality, and anomaly hierarchy. Through an in-depth analysis of the VAD field, we finally summarize future developments for VAD and conclude the key findings and contributions of this survey.
Abstract:Existing out-of-distribution (OOD) methods have shown great success on balanced datasets but become ineffective in long-tailed recognition (LTR) scenarios where 1) OOD samples are often wrongly classified into head classes and/or 2) tail-class samples are treated as OOD samples. To address these issues, current studies fit a prior distribution of auxiliary/pseudo OOD data to the long-tailed in-distribution (ID) data. However, it is difficult to obtain such an accurate prior distribution given the unknowingness of real OOD samples and heavy class imbalance in LTR. A straightforward solution to avoid the requirement of this prior is to learn an outlier class to encapsulate the OOD samples. The main challenge is then to tackle the aforementioned confusion between OOD samples and head/tail-class samples when learning the outlier class. To this end, we introduce a novel calibrated outlier class learning (COCL) approach, in which 1) a debiased large margin learning method is introduced in the outlier class learning to distinguish OOD samples from both head and tail classes in the representation space and 2) an outlier-class-aware logit calibration method is defined to enhance the long-tailed classification confidence. Extensive empirical results on three popular benchmarks CIFAR10-LT, CIFAR100-LT, and ImageNet-LT demonstrate that COCL substantially outperforms state-of-the-art OOD detection methods in LTR while being able to improve the classification accuracy on ID data. Code is available at https://github.com/mala-lab/COCL.
Abstract:Open-Vocabulary Object Detection (OVOD) aims to detect novel objects beyond a given set of base categories on which the detection model is trained. Recent OVOD methods focus on adapting the image-level pre-trained vision-language models (VLMs), such as CLIP, to a region-level object detection task via, eg., region-level knowledge distillation, regional prompt learning, or region-text pre-training, to expand the detection vocabulary. These methods have demonstrated remarkable performance in recognizing regional visual concepts, but they are weak in exploiting the VLMs' powerful global scene understanding ability learned from the billion-scale image-level text descriptions. This limits their capability in detecting hard objects of small, blurred, or occluded appearance from novel/base categories, whose detection heavily relies on contextual information. To address this, we propose a novel approach, namely Simple Image-level Classification for Context-Aware Detection Scoring (SIC-CADS), to leverage the superior global knowledge yielded from CLIP for complementing the current OVOD models from a global perspective. The core of SIC-CADS is a multi-modal multi-label recognition (MLR) module that learns the object co-occurrence-based contextual information from CLIP to recognize all possible object categories in the scene. These image-level MLR scores can then be utilized to refine the instance-level detection scores of the current OVOD models in detecting those hard objects. This is verified by extensive empirical results on two popular benchmarks, OV-LVIS and OV-COCO, which show that SIC-CADS achieves significant and consistent improvement when combined with different types of OVOD models. Further, SIC-CADS also improves the cross-dataset generalization ability on Objects365 and OpenImages. The code is available at https://github.com/mala-lab/SIC-CADS.
Abstract:The ongoing challenges in time series anomaly detection (TSAD), notably the scarcity of anomaly labels and the variability in anomaly lengths and shapes, have led to the need for a more efficient solution. As limited anomaly labels hinder traditional supervised models in TSAD, various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue. However, they encounter difficulties handling variations in anomaly lengths and shapes, limiting their adaptability to diverse anomalies. Additionally, many benchmark datasets suffer from the problem of having explicit anomalies that even random functions can detect. This problem is exacerbated by ill-posed evaluation metrics, known as point adjustment (PA), which can result in inflated model performance. In this context, we propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD), which addresses these challenges by modeling features across three data domains - temporal, frequency, and residual domains - without relying on anomaly labels. Unlike traditional contrastive learning methods, TriAD employs both inter-domain and intra-domain contrastive loss to learn common attributes among normal data and differentiate them from anomalies. Additionally, our approach can detect anomalies of varying lengths by integrating with a discord discovery algorithm. It is worth noting that this study is the first to reevaluate the deep learning potential in TSAD, utilizing both rigorously designed datasets (i.e., UCR Archive) and evaluation metrics (i.e., PA%K and affiliation). Through experimental results on the UCR dataset, TriAD achieves an impressive three-fold increase in PA%K based F1 scores over SOTA deep learning models, and 50% increase of accuracy as compared to SOTA discord discovery algorithms.
Abstract:Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal. However, current approaches are inherently limited to a closed-set setting and may struggle in open-world applications where there can be anomaly categories in the test data unseen during training. A few recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos. However, such a setting focuses on predicting frame anomaly scores, having no ability to recognize the specific categories of anomalies, despite the fact that this ability is essential for building more informed video surveillance systems. This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies. To this end, we propose a model that decouples OVVAD into two mutually complementary tasks -- class-agnostic detection and class-specific classification -- and jointly optimizes both tasks. Particularly, we devise a semantic knowledge injection module to introduce semantic knowledge from large language models for the detection task, and design a novel anomaly synthesis module to generate pseudo unseen anomaly videos with the help of large vision generation models for the classification task. These semantic knowledge and synthesis anomalies substantially extend our model's capability in detecting and categorizing a variety of seen and unseen anomalies. Extensive experiments on three widely-used benchmarks demonstrate our model achieves state-of-the-art performance on OVVAD task.
Abstract:This paper considers an under-explored Graph Anomaly Detection (GAD) task, namely open-set GAD, which aims to detect anomalous nodes using a small number of labelled training normal and anomaly nodes (known as seen anomalies) that cannot illustrate all possible inference-time abnormalities. The task has attracted growing attention due to the availability of anomaly prior knowledge from the label information that can help to substantially reduce detection errors. However, current methods tend to over-emphasise fitting the seen anomalies, leading to a weak generalisation ability to detect unseen anomalies, i.e., those that are not illustrated by the labelled anomaly nodes. Further, they were introduced to handle Euclidean data, failing to effectively capture important non-Euclidean features for GAD. In this work, we propose a novel open-set GAD approach, namely normal structure regularisation (NSReg), to leverage the rich normal graph structure embedded in the labelled nodes to tackle the aforementioned two issues. In particular, NSReg trains an anomaly-discriminative supervised graph anomaly detector, with a plug-and-play regularisation term to enforce compact, semantically-rich representations of normal nodes. To this end, the regularisation is designed to differentiate various types of normal nodes, including labelled normal nodes that are connected in their local neighbourhood, and those that are not connected. By doing so, it helps incorporate strong normality into the supervised anomaly detector learning, mitigating their overfitting to the seen anomalies. Extensive empirical results on real-world datasets demonstrate the superiority of our proposed NSReg for open-set GAD.
Abstract:Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, \eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
Abstract:Open-set supervised anomaly detection (OSAD) - a recently emerging anomaly detection area - aims at utilizing a few samples of anomaly classes seen during training to detect unseen anomalies (i.e., samples from open-set anomaly classes), while effectively identifying the seen anomalies. Benefiting from the prior knowledge illustrated by the seen anomalies, current OSAD methods can often largely reduce false positive errors. However, these methods treat the anomaly examples as from a homogeneous distribution, rendering them less effective in generalizing to unseen anomalies that can be drawn from any distribution. In this paper, we propose to learn heterogeneous anomaly distributions using the limited anomaly examples to address this issue. To this end, we introduce a novel approach, namely Anomaly Heterogeneity Learning (AHL), that simulates a diverse set of heterogeneous (seen and unseen) anomaly distributions and then utilizes them to learn a unified heterogeneous abnormality model. Further, AHL is a generic framework that existing OSAD models can plug and play for enhancing their abnormality modeling. Extensive experiments on nine real-world anomaly detection datasets show that AHL can 1) substantially enhance different state-of-the-art (SOTA) OSAD models in detecting both seen and unseen anomalies, achieving new SOTA performance on a large set of datasets, and 2) effectively generalize to unseen anomalies in new target domains.
Abstract:Most of current anomaly detection models assume that the normal pattern remains same all the time. However, the normal patterns of Web services change dramatically and frequently. The model trained on old-distribution data is outdated after such changes. Retraining the whole model every time is expensive. Besides, at the beginning of normal pattern changes, there is not enough observation data from the new distribution. Retraining a large neural network model with limited data is vulnerable to overfitting. Thus, we propose a Light and Anti-overfitting Retraining Approach (LARA) for deep variational auto-encoder based time series anomaly detection methods (VAEs). This work aims to make three novel contributions: 1) the retraining process is formulated as a convex problem and can converge at a fast rate as well as prevent overfitting; 2) designing a ruminate block, which leverages the historical data without the need to store them; 3) mathematically proving that when fine-tuning the latent vector and reconstructed data, the linear formations can achieve the least adjusting errors between the ground truths and the fine-tuned ones. Moreover, we have performed many experiments to verify that retraining LARA with even 43 time slots of data from new distribution can result in its competitive F1 Score in comparison with the state-of-the-art anomaly detection models trained with sufficient data. Besides, we verify its light overhead.