Abstract:Visible watermark removal which involves watermark cleaning and background content restoration is pivotal to evaluate the resilience of watermarks. Existing deep neural network (DNN)-based models still struggle with large-area watermarks and are overly dependent on the quality of watermark mask prediction. To overcome these challenges, we introduce a novel feature adapting framework that leverages the representation modeling capacity of a pre-trained image inpainting model. Our approach bridges the knowledge gap between image inpainting and watermark removal by fusing information of the residual background content beneath watermarks into the inpainting backbone model. We establish a dual-branch system to capture and embed features from the residual background content, which are merged into intermediate features of the inpainting backbone model via gated feature fusion modules. Moreover, for relieving the dependence on high-quality watermark masks, we introduce a new training paradigm by utilizing coarse watermark masks to guide the inference process. This contributes to a visible image removal model which is insensitive to the quality of watermark mask during testing. Extensive experiments on both a large-scale synthesized dataset and a real-world dataset demonstrate that our approach significantly outperforms existing state-of-the-art methods. The source code is available in the supplementary materials.
Abstract:Visible watermarks, while instrumental in protecting image copyrights, frequently distort the underlying content, complicating tasks like scene interpretation and image editing. Visible watermark removal aims to eliminate the interference of watermarks and restore the background content. However, existing methods often implement watermark component removal and background restoration tasks within a singular branch, leading to residual watermarks in the predictions and ignoring cases where watermarks heavily obscure the background. To address these limitations, this study introduces the Removing Interference and Recovering Content Imaginatively (RIRCI) framework. RIRCI embodies a two-stage approach: the initial phase centers on discerning and segregating the watermark component, while the subsequent phase focuses on background content restoration. To achieve meticulous background restoration, our proposed model employs a dual-path network capable of fully exploring the intrinsic background information beneath semi-transparent watermarks and peripheral contextual information from unaffected regions. Moreover, a Global and Local Context Interaction module is built upon multi-layer perceptrons and bidirectional feature transformation for comprehensive representation modeling in the background restoration phase. The efficacy of our approach is empirically validated across two large-scale datasets, and our findings reveal a marked enhancement over existing watermark removal techniques.