Abstract:Diffusion language models enable any-order generation and bidirectional conditioning, offering appealing flexibility for tasks such as infilling, rewriting, and self-correction. However, their formulation-predicting one part of a sequence from another within a single-step dependency-limits modeling depth and often yields lower sample quality and stability than autoregressive (AR) models. To address this, we revisit autoregressive modeling as a foundation and reformulate diffusion-style training into a structured multi-group prediction process. We propose Any-order Any-subset Autoregressive modeling (A3), a generalized framework that extends the standard AR factorization to arbitrary token groups and generation orders. A3 preserves the probabilistic rigor and multi-layer dependency modeling of AR while inheriting diffusion models' flexibility for parallel and bidirectional generation. We implement A3 through a two-stream attention architecture and a progressive adaptation strategy that transitions pretrained AR models toward any-order prediction. Experiments on question answering, commonsense reasoning, and story infilling demonstrate that A3 outperforms diffusion-based models while maintaining flexible decoding. This work offers a unified approach for a flexible, efficient, and novel language modeling paradigm.
Abstract:Deep Neural Networks (DNNs) are known to be vulnerable to various adversarial perturbations. To address the safety concerns arising from these vulnerabilities, adversarial training (AT) has emerged as one of the most effective paradigms for enhancing the robustness of DNNs. However, existing AT frameworks primarily focus on a single or a limited set of attack types, leaving DNNs still exposed to attack types that may be encountered in practice but not addressed during training. In this paper, we propose an efficient fine-tuning method called Calibrated Adversarial Sampling (CAS) to address these issues. From the optimization perspective within the multi-armed bandit framework, it dynamically designs rewards and balances exploration and exploitation by considering the dynamic and interdependent characteristics of multiple robustness dimensions. Experiments on benchmark datasets show that CAS achieves superior overall robustness while maintaining high clean accuracy, providing a new paradigm for robust generalization of DNNs.
Abstract:Large language models (LLMs) are increasingly tasked with generating structured outputs. While structured generation methods ensure validity, they often lack output diversity, a critical limitation that we confirm in our preliminary study. We propose a novel method to enhance diversity in automaton-based structured generation. Our approach utilizes automata traversal history to steer LLMs towards novel structural patterns. Evaluations show our method significantly improves structural and content diversity while maintaining comparable generation efficiency. Furthermore, we conduct a case study showcasing the effectiveness of our method in generating diverse test cases for testing open-source libraries.




Abstract:Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
Abstract:Adversarial training (AT) has been considered one of the most effective methods for making deep neural networks robust against adversarial attacks, while the training mechanisms and dynamics of AT remain open research problems. In this paper, we present a novel perspective on studying AT through the lens of class-wise feature attribution. Specifically, we identify the impact of a key family of features on AT that are shared by multiple classes, which we call cross-class features. These features are typically useful for robust classification, which we offer theoretical evidence to illustrate through a synthetic data model. Through systematic studies across multiple model architectures and settings, we find that during the initial stage of AT, the model tends to learn more cross-class features until the best robustness checkpoint. As AT further squeezes the training robust loss and causes robust overfitting, the model tends to make decisions based on more class-specific features. Based on these discoveries, we further provide a unified view of two existing properties of AT, including the advantage of soft-label training and robust overfitting. Overall, these insights refine the current understanding of AT mechanisms and provide new perspectives on studying them. Our code is available at https://github.com/PKU-ML/Cross-Class-Features-AT.




Abstract:Recent studies have revealed that the loss landscape of large language models resembles a basin, within which the models perform nearly identically, and outside of which they lose all their capabilities. In this work, we conduct further studies on the loss landscape of large language models. We discover that pre-training creates a "basic capability" basin, and subsequent fine-tuning creates "specific capability" basins (e.g., math, safety, coding) within the basic capability basin. We further investigate two types of loss landscapes: the most-case landscape (i.e., the landscape along most directions) and the worst-case landscape (i.e., the landscape along the worst direction). We argue that as long as benign fine-tuning remains within the most-case basin, it will not compromise previous capabilities. Similarly, any fine-tuning (including the adversarial one) that stays within the worst-case basin would not compromise previous capabilities. Finally, we theoretically demonstrate that the size of the most-case basin can bound the size of the worst-case basin and the robustness with respect to input perturbations. We also show that, due to the over-parameterization property of current large language models, one can easily enlarge the basins by five times.
Abstract:The significant progress of large language models (LLMs) has led to remarkable achievements across numerous applications. However, their ability to generate harmful content has sparked substantial safety concerns. Despite the implementation of safety alignment techniques during the pre-training phase, recent research indicates that fine-tuning LLMs on adversarial or even benign data can inadvertently compromise their safety. In this paper, we re-examine the fundamental issue of why fine-tuning on non-harmful data still results in safety degradation. We introduce a safety-aware probing (SAP) optimization framework designed to mitigate the safety risks of fine-tuning LLMs. Specifically, SAP incorporates a safety-aware probe into the gradient propagation process, mitigating the model's risk of safety degradation by identifying potential pitfalls in gradient directions, thereby enhancing task-specific performance while successfully preserving model safety. Our extensive experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model and achieves comparable test loss to standard fine-tuning methods. Our code is available at https://github.com/ChengcanWu/SAP.
Abstract:Large Language Models (LLMs) are known to be vulnerable to jailbreaking attacks, wherein adversaries exploit carefully engineered prompts to induce harmful or unethical responses. Such threats have raised critical concerns about the safety and reliability of LLMs in real-world deployment. While existing defense mechanisms partially mitigate such risks, subsequent advancements in adversarial techniques have enabled novel jailbreaking methods to circumvent these protections, exposing the limitations of static defense frameworks. In this work, we explore defending against evolving jailbreaking threats through the lens of context retrieval. First, we conduct a preliminary study demonstrating that even a minimal set of safety-aligned examples against a particular jailbreak can significantly enhance robustness against this attack pattern. Building on this insight, we further leverage the retrieval-augmented generation (RAG) techniques and propose Safety Context Retrieval (SCR), a scalable and robust safeguarding paradigm for LLMs against jailbreaking. Our comprehensive experiments demonstrate how SCR achieves superior defensive performance against both established and emerging jailbreaking tactics, contributing a new paradigm to LLM safety. Our code will be available upon publication.
Abstract:The rapid advancement of large language models (LLMs) has demonstrated milestone success in a variety of tasks, yet their potential for generating harmful content has raised significant safety concerns. Existing safety evaluation approaches typically operate directly on textual responses, overlooking the rich information embedded in the model's internal representations. In this paper, we propose Safety Representation Ranking (SRR), a listwise ranking framework that selects safe responses using hidden states from the LLM itself. SRR encodes both instructions and candidate completions using intermediate transformer representations and ranks candidates via a lightweight similarity-based scorer. Our approach directly leverages internal model states and supervision at the list level to capture subtle safety signals. Experiments across multiple benchmarks show that SRR significantly improves robustness to adversarial prompts. Our code will be available upon publication.
Abstract:3D affordance reasoning is essential in associating human instructions with the functional regions of 3D objects, facilitating precise, task-oriented manipulations in embodied AI. However, current methods, which predominantly depend on sparse 3D point clouds, exhibit limited generalizability and robustness due to their sensitivity to coordinate variations and the inherent sparsity of the data. By contrast, 3D Gaussian Splatting (3DGS) delivers high-fidelity, real-time rendering with minimal computational overhead by representing scenes as dense, continuous distributions. This positions 3DGS as a highly effective approach for capturing fine-grained affordance details and improving recognition accuracy. Nevertheless, its full potential remains largely untapped due to the absence of large-scale, 3DGS-specific affordance datasets. To overcome these limitations, we present 3DAffordSplat, the first large-scale, multi-modal dataset tailored for 3DGS-based affordance reasoning. This dataset includes 23,677 Gaussian instances, 8,354 point cloud instances, and 6,631 manually annotated affordance labels, encompassing 21 object categories and 18 affordance types. Building upon this dataset, we introduce AffordSplatNet, a novel model specifically designed for affordance reasoning using 3DGS representations. AffordSplatNet features an innovative cross-modal structure alignment module that exploits structural consistency priors to align 3D point cloud and 3DGS representations, resulting in enhanced affordance recognition accuracy. Extensive experiments demonstrate that the 3DAffordSplat dataset significantly advances affordance learning within the 3DGS domain, while AffordSplatNet consistently outperforms existing methods across both seen and unseen settings, highlighting its robust generalization capabilities.