Abstract:Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech. It still suffers from low speaker similarity and poor prosody naturalness. In this paper, we propose a multi-modal DSR model by leveraging neural codec language modeling to improve the reconstruction results, especially for the speaker similarity and prosody naturalness. Our proposed model consists of: (i) a multi-modal content encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual inputs; (ii) a speaker codec encoder to extract and normalize the speaker-aware codecs from the dysarthric speech, in order to provide original timbre and normal prosody; (iii) a codec language model based speech decoder to reconstruct the speech based on the extracted phoneme embeddings and normalized codecs. Evaluations on the commonly used UASpeech corpus show that our proposed model can achieve significant improvements in terms of speaker similarity and prosody naturalness.
Abstract:In this study, we propose a simple and efficient Non-Autoregressive (NAR) text-to-speech (TTS) system based on diffusion, named SimpleSpeech. Its simpleness shows in three aspects: (1) It can be trained on the speech-only dataset, without any alignment information; (2) It directly takes plain text as input and generates speech through an NAR way; (3) It tries to model speech in a finite and compact latent space, which alleviates the modeling difficulty of diffusion. More specifically, we propose a novel speech codec model (SQ-Codec) with scalar quantization, SQ-Codec effectively maps the complex speech signal into a finite and compact latent space, named scalar latent space. Benefits from SQ-Codec, we apply a novel transformer diffusion model in the scalar latent space of SQ-Codec. We train SimpleSpeech on 4k hours of a speech-only dataset, it shows natural prosody and voice cloning ability. Compared with previous large-scale TTS models, it presents significant speech quality and generation speed improvement. Demos are released.