The University of Hong Kong
Abstract:Large Multimodal Models (LMMs) have demonstrated remarkable problem-solving capabilities across various domains. However, their ability to perform mathematical reasoning when answer options are represented as images--an essential aspect of multi-image comprehension--remains underexplored. To bridge this gap, we introduce VisioMath, a benchmark designed to evaluate mathematical reasoning in multimodal contexts involving image-based answer choices. VisioMath comprises 8,070 images and 1,800 multiple-choice questions, where each answer option is an image, presenting unique challenges to existing LMMs. To the best of our knowledge, VisioMath is the first dataset specifically tailored for mathematical reasoning in image-based-option scenarios, where fine-grained distinctions between answer choices are critical for accurate problem-solving. We systematically evaluate state-of-the-art LMMs on VisioMath and find that even the most advanced models struggle with this task. Notably, GPT-4o achieves only 45.9% accuracy, underscoring the limitations of current models in reasoning over visually similar answer choices. By addressing a crucial gap in existing benchmarks, VisioMath establishes a rigorous testbed for future research, driving advancements in multimodal reasoning.
Abstract:This paper reports on the NTIRE 2025 challenge on Text to Image (T2I) generation model quality assessment, which will be held in conjunction with the New Trends in Image Restoration and Enhancement Workshop (NTIRE) at CVPR 2025. The aim of this challenge is to address the fine-grained quality assessment of text-to-image generation models. This challenge evaluates text-to-image models from two aspects: image-text alignment and image structural distortion detection, and is divided into the alignment track and the structural track. The alignment track uses the EvalMuse-40K, which contains around 40K AI-Generated Images (AIGIs) generated by 20 popular generative models. The alignment track has a total of 371 registered participants. A total of 1,883 submissions are received in the development phase, and 507 submissions are received in the test phase. Finally, 12 participating teams submitted their models and fact sheets. The structure track uses the EvalMuse-Structure, which contains 10,000 AI-Generated Images (AIGIs) with corresponding structural distortion mask. A total of 211 participants have registered in the structure track. A total of 1155 submissions are received in the development phase, and 487 submissions are received in the test phase. Finally, 8 participating teams submitted their models and fact sheets. Almost all methods have achieved better results than baseline methods, and the winning methods in both tracks have demonstrated superior prediction performance on T2I model quality assessment.
Abstract:Deep learning models are increasingly deployed in safety-critical tasks where predictions must satisfy hard constraints, such as physical laws, fairness requirements, or safety limits. However, standard architectures lack built-in mechanisms to enforce such constraints, and existing approaches based on regularization or projection are often limited to simple constraints, computationally expensive, or lack feasibility guarantees. This paper proposes a model-agnostic framework for enforcing input-dependent linear equality and inequality constraints on neural network outputs. The architecture combines a task network trained for prediction accuracy with a safe network trained using decision rules from the stochastic and robust optimization literature to ensure feasibility across the entire input space. The final prediction is a convex combination of the two subnetworks, guaranteeing constraint satisfaction during both training and inference without iterative procedures or runtime optimization. We prove that the architecture is a universal approximator of constrained functions and derive computationally tractable formulations based on linear decision rules. Empirical results on benchmark regression tasks show that our method consistently satisfies constraints while maintaining competitive accuracy and low inference latency.
Abstract:Brain-inspired computing aims to mimic cognitive functions like associative memory, the ability to recall complete patterns from partial cues. Memristor technology offers promising hardware for such neuromorphic systems due to its potential for efficient in-memory analog computing. Hopfield Neural Networks (HNNs) are a classic model for associative memory, but implementations on conventional hardware suffer from efficiency bottlenecks, while prior memristor-based HNNs faced challenges with vulnerability to hardware defects due to offline training, limited storage capacity, and difficulty processing analog patterns. Here we introduce and experimentally demonstrate on integrated memristor hardware a new hardware-adaptive learning algorithm for associative memories that significantly improves defect tolerance and capacity, and naturally extends to scalable multilayer architectures capable of handling both binary and continuous patterns. Our approach achieves 3x effective capacity under 50% device faults compared to state-of-the-art methods. Furthermore, its extension to multilayer architectures enables superlinear capacity scaling (\(\propto N^{1.49}\ for binary patterns) and effective recalling of continuous patterns (\propto N^{1.74}\ scaling), as compared to linear capacity scaling for previous HNNs. It also provides flexibility to adjust capacity by tuning hidden neurons for the same-sized patterns. By leveraging the massive parallelism of the hardware enabled by synchronous updates, it reduces energy by 8.8x and latency by 99.7% for 64-dimensional patterns over asynchronous schemes, with greater improvements at scale. This promises the development of more reliable memristor-based associative memory systems and enables new applications research due to the significantly improved capacity, efficiency, and flexibility.
Abstract:Real-world time series often have multiple frequency components that are intertwined with each other, making accurate time series forecasting challenging. Decomposing the mixed frequency components into multiple single frequency components is a natural choice. However, the information density of patterns varies across different frequencies, and employing a uniform modeling approach for different frequency components can lead to inaccurate characterization. To address this challenges, inspired by the flexibility of the recent Kolmogorov-Arnold Network (KAN), we propose a KAN-based Frequency Decomposition Learning architecture (TimeKAN) to address the complex forecasting challenges caused by multiple frequency mixtures. Specifically, TimeKAN mainly consists of three components: Cascaded Frequency Decomposition (CFD) blocks, Multi-order KAN Representation Learning (M-KAN) blocks and Frequency Mixing blocks. CFD blocks adopt a bottom-up cascading approach to obtain series representations for each frequency band. Benefiting from the high flexibility of KAN, we design a novel M-KAN block to learn and represent specific temporal patterns within each frequency band. Finally, Frequency Mixing blocks is used to recombine the frequency bands into the original format. Extensive experimental results across multiple real-world time series datasets demonstrate that TimeKAN achieves state-of-the-art performance as an extremely lightweight architecture. Code is available at https://github.com/huangst21/TimeKAN.
Abstract:Optimization models have been applied to solve a wide variety of decision-making problems. These models are usually developed by optimization experts but are used by practitioners without optimization expertise in various application domains. As a result, practitioners often struggle to interact with and draw useful conclusions from optimization models independently. To fill this gap, we introduce OptiChat, a natural language dialogue system designed to help practitioners interpret model formulation, diagnose infeasibility, analyze sensitivity, retrieve information, evaluate modifications, and provide counterfactual explanations. By augmenting large language models (LLMs) with functional calls and code generation tailored for optimization models, we enable seamless interaction and minimize the risk of hallucinations in OptiChat. We develop a new dataset to evaluate OptiChat's performance in explaining optimization models. Experiments demonstrate that OptiChat effectively bridges the gap between optimization models and practitioners, delivering autonomous, accurate, and instant responses.
Abstract:Machine learning algorithms are increasingly being applied to fault detection and diagnosis (FDD) in chemical processes. However, existing data-driven FDD platforms often lack interpretability for process operators and struggle to identify root causes of previously unseen faults. This paper presents FaultExplainer, an interactive tool designed to improve fault detection, diagnosis, and explanation in the Tennessee Eastman Process (TEP). FaultExplainer integrates real-time sensor data visualization, Principal Component Analysis (PCA)-based fault detection, and identification of top contributing variables within an interactive user interface powered by large language models (LLMs). We evaluate the LLMs' reasoning capabilities in two scenarios: one where historical root causes are provided, and one where they are not to mimic the challenge of previously unseen faults. Experimental results using GPT-4o and o1-preview models demonstrate the system's strengths in generating plausible and actionable explanations, while also highlighting its limitations, including reliance on PCA-selected features and occasional hallucinations.
Abstract:This paper proposes a new data-driven methodology for predicting intervals of post-fault voltage trajectories in power systems. We begin by introducing the Quantile Attention-Fourier Deep Operator Network (QAF-DeepONet), designed to capture the complex dynamics of voltage trajectories and reliably estimate quantiles of the target trajectory without any distributional assumptions. The proposed operator regression model maps the observed portion of the voltage trajectory to its unobserved post-fault trajectory. Our methodology employs a pre-training and fine-tuning process to address the challenge of limited data availability. To ensure data privacy in learning the pre-trained model, we use merging via federated learning with data from neighboring buses, enabling the model to learn the underlying voltage dynamics from such buses without directly sharing their data. After pre-training, we fine-tune the model with data from the target bus, allowing it to adapt to unique dynamics and operating conditions. Finally, we integrate conformal prediction into the fine-tuned model to ensure coverage guarantees for the predicted intervals. We evaluated the performance of the proposed methodology using the New England 39-bus test system considering detailed models of voltage and frequency controllers. Two metrics, Prediction Interval Coverage Probability (PICP) and Prediction Interval Normalized Average Width (PINAW), are used to numerically assess the model's performance in predicting intervals. The results show that the proposed approach offers practical and reliable uncertainty quantification in predicting the interval of post-fault voltage trajectories.
Abstract:In scenarios with limited training data or where explainability is crucial, conventional neural network-based machine learning models often face challenges. In contrast, Bayesian inference-based algorithms excel in providing interpretable predictions and reliable uncertainty estimation in these scenarios. While many state-of-the-art in-memory computing (IMC) architectures leverage emerging non-volatile memory (NVM) technologies to offer unparalleled computing capacity and energy efficiency for neural network workloads, their application in Bayesian inference is limited. This is because the core operations in Bayesian inference differ significantly from the multiplication-accumulation (MAC) operations common in neural networks, rendering them generally unsuitable for direct implementation in most existing IMC designs. In this paper, we propose FeBiM, an efficient and compact Bayesian inference engine powered by multi-bit ferroelectric field-effect transistor (FeFET)-based IMC. FeBiM effectively encodes the trained probabilities of a Bayesian inference model within a compact FeFET-based crossbar. It maps quantized logarithmic probabilities to discrete FeFET states. As a result, the accumulated outputs of the crossbar naturally represent the posterior probabilities, i.e., the Bayesian inference model's output given a set of observations. This approach enables efficient in-memory Bayesian inference without the need for additional calculation circuitry. As the first FeFET-based in-memory Bayesian inference engine, FeBiM achieves an impressive storage density of 26.32 Mb/mm$^{2}$ and a computing efficiency of 581.40 TOPS/W in a representative Bayesian classification task. These results demonstrate 10.7$\times$/43.4$\times$ improvement in compactness/efficiency compared to the state-of-the-art hardware implementation of Bayesian inference.
Abstract:Scanning transmission electron microscopy (STEM) is a powerful tool to reveal the morphologies and structures of materials, thereby attracting intensive interests from the scientific and industrial communities. The outstanding spatial (atomic level) and temporal (ms level) resolutions of the STEM techniques generate fruitful amounts of high-definition data, thereby enabling the high-volume and high-speed analysis of materials. On the other hand, processing of the big dataset generated by STEM is time-consuming and beyond the capability of human-based manual work, which urgently calls for computer-based automation. In this work, we present a deep-learning mask region-based neural network (Mask R-CNN) for the recognition of nanoparticles imaged by STEM, as well as generating the associated dimensional analysis. The Mask R-CNN model was tested on simulated STEM-HAADF results with different Gaussian noises, particle shapes and particle sizes, and the results indicated that Gaussian noise has determining influence on the accuracy of recognition. By applying Gaussian and Non-Local Means filters on the noise-containing STEM-HAADF results, the influences of noises are largely mitigated, and recognition accuracy is significantly improved. This filtering-recognition approach was further applied to experimental STEM-HAADF results, which yields satisfying accuracy compared with the traditional threshold methods. The deep-learning-based method developed in this work has great potentials in analysis of the complicated structures and large data generated by STEM-HAADF.