Abstract:Explainable Reinforcement Learning (XRL) has emerged as a promising approach in improving the transparency of Reinforcement Learning (RL) agents. However, there remains a gap between complex RL policies and domain experts, due to the limited comprehensibility of XRL results and isolated coverage of current XRL approaches that leave users uncertain about which tools to employ. To address these challenges, we introduce TalkToAgent, a multi-agent Large Language Models (LLM) framework that delivers interactive, natural language explanations for RL policies. The architecture with five specialized LLM agents (Coordinator, Explainer, Coder, Evaluator, and Debugger) enables TalkToAgent to automatically map user queries to relevant XRL tools and clarify an agent's actions in terms of either key state variables, expected outcomes, or counterfactual explanations. Moreover, our approach extends previous counterfactual explanations by deriving alternative scenarios from qualitative behavioral descriptions, or even new rule-based policies. We validated TalkToAgent on quadruple-tank process control problem, a well-known nonlinear control benchmark. Results demonstrated that TalkToAgent successfully mapped user queries into XRL tasks with high accuracy, and coder-debugger interactions minimized failures in counterfactual generation. Furthermore, qualitative evaluation confirmed that TalkToAgent effectively interpreted agent's actions and contextualized their meaning within the problem domain.
Abstract:With the rise of deep learning, there has been renewed interest within the process industries to utilize data on large-scale nonlinear sensing and control problems. We identify key statistical and machine learning techniques that have seen practical success in the process industries. To do so, we start with hybrid modeling to provide a methodological framework underlying core application areas: soft sensing, process optimization, and control. Soft sensing contains a wealth of industrial applications of statistical and machine learning methods. We quantitatively identify research trends, allowing insight into the most successful techniques in practice. We consider two distinct flavors for data-driven optimization and control: hybrid modeling in conjunction with mathematical programming techniques and reinforcement learning. Throughout these application areas, we discuss their respective industrial requirements and challenges. A common challenge is the interpretability and efficiency of purely data-driven methods. This suggests a need to carefully balance deep learning techniques with domain knowledge. As a result, we highlight ways prior knowledge may be integrated into industrial machine learning applications. The treatment of methods, problems, and applications presented here is poised to inform and inspire practitioners and researchers to develop impactful data-driven sensing, optimization, and control solutions in the process industries.
Abstract:Over the last ten years, we have seen a significant increase in industrial data, tremendous improvement in computational power, and major theoretical advances in machine learning. This opens up an opportunity to use modern machine learning tools on large-scale nonlinear monitoring and control problems. This article provides a survey of recent results with applications in the process industry.