Abstract:Brain-inspired computing aims to mimic cognitive functions like associative memory, the ability to recall complete patterns from partial cues. Memristor technology offers promising hardware for such neuromorphic systems due to its potential for efficient in-memory analog computing. Hopfield Neural Networks (HNNs) are a classic model for associative memory, but implementations on conventional hardware suffer from efficiency bottlenecks, while prior memristor-based HNNs faced challenges with vulnerability to hardware defects due to offline training, limited storage capacity, and difficulty processing analog patterns. Here we introduce and experimentally demonstrate on integrated memristor hardware a new hardware-adaptive learning algorithm for associative memories that significantly improves defect tolerance and capacity, and naturally extends to scalable multilayer architectures capable of handling both binary and continuous patterns. Our approach achieves 3x effective capacity under 50% device faults compared to state-of-the-art methods. Furthermore, its extension to multilayer architectures enables superlinear capacity scaling (\(\propto N^{1.49}\ for binary patterns) and effective recalling of continuous patterns (\propto N^{1.74}\ scaling), as compared to linear capacity scaling for previous HNNs. It also provides flexibility to adjust capacity by tuning hidden neurons for the same-sized patterns. By leveraging the massive parallelism of the hardware enabled by synchronous updates, it reduces energy by 8.8x and latency by 99.7% for 64-dimensional patterns over asynchronous schemes, with greater improvements at scale. This promises the development of more reliable memristor-based associative memory systems and enables new applications research due to the significantly improved capacity, efficiency, and flexibility.
Abstract:To support emerging applications ranging from holographic communications to extended reality, next-generation mobile wireless communication systems require ultra-fast and energy-efficient baseband processors. Traditional complementary metal-oxide-semiconductor (CMOS)-based baseband processors face two challenges in transistor scaling and the von Neumann bottleneck. To address these challenges, in-memory computing-based baseband processors using resistive random-access memory (RRAM) present an attractive solution. In this paper, we propose and demonstrate RRAM-implemented in-memory baseband processing for the widely adopted multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) air interface. Its key feature is to execute the key operations, including discrete Fourier transform (DFT) and MIMO detection using linear minimum mean square error (L-MMSE) and zero forcing (ZF), in one-step. In addition, RRAM-based channel estimation module is proposed and discussed. By prototyping and simulations, we demonstrate the feasibility of RRAM-based full-fledged communication system in hardware, and reveal it can outperform state-of-the-art baseband processors with a gain of 91.2$\times$ in latency and 671$\times$ in energy efficiency by large-scale simulations. Our results pave a potential pathway for RRAM-based in-memory computing to be implemented in the era of the sixth generation (6G) mobile communications.