Abstract:Recently, large language models(LLMs) have played an increasingly important role in solving a wide range of NLP tasks, leveraging their capabilities of natural language understanding and generating. Integration with external tools further enhances LLMs' effectiveness, providing more precise, timely, and specialized responses. However, LLMs still encounter difficulties with non-executable actions and improper actions, which are primarily attributed to incorrect parameters. The process of generating parameters by LLMs is confined to the tool level, employing the coarse-grained strategy without considering the different difficulties of various tools. To address this issue, we propose TUMS, a novel framework designed to enhance the tool-use capabilities of LLMs by transforming tool-level processing into parameter-level processing. Specifically, our framework consists of four key components: (1) an intent recognizer that identifies the user's intent to help LLMs better understand the task; (2) a task decomposer that breaks down complex tasks into simpler subtasks, each involving a tool call; (3) a subtask processor equipped with multi-structure handlers to generate accurate parameters; and (4) an executor. Our empirical studies have evidenced the effectiveness and efficiency of the TUMS framework with an average of 19.6\% and 50.6\% improvement separately on easy and hard benchmarks of ToolQA, meanwhile, we demonstrated the key contribution of each part with ablation experiments, offering more insights and stimulating future research on Tool-augmented LLMs.
Abstract:Efficiently modeling and exploiting opponents is a long-standing challenge in adversarial domains. Large Language Models (LLMs) trained on extensive textual data have recently demonstrated outstanding performance in general tasks, introducing new research directions for opponent modeling. Some studies primarily focus on directly using LLMs to generate decisions based on the elaborate prompt context that incorporates opponent descriptions, while these approaches are limited to scenarios where LLMs possess adequate domain expertise. To address that, we introduce a two-stage Strategy-Augmented Planning (SAP) framework that significantly enhances the opponent exploitation capabilities of LLM-based agents by utilizing a critical component, the Strategy Evaluation Network (SEN). Specifically, in the offline stage, we construct an explicit strategy space and subsequently collect strategy-outcome pair data for training the SEN network. During the online phase, SAP dynamically recognizes the opponent's strategies and greedily exploits them by searching best response strategy on the well-trained SEN, finally translating strategy to a course of actions by carefully designed prompts. Experimental results show that SAP exhibits robust generalization capabilities, allowing it to perform effectively not only against previously encountered opponent strategies but also against novel, unseen strategies. In the MicroRTS environment, SAP achieves a 85.35\% performance improvement over baseline methods and matches the competitiveness of reinforcement learning approaches against state-of-the-art (SOTA) rule-based AI.
Abstract:Both Byzantine resilience and communication efficiency have attracted tremendous attention recently for their significance in edge federated learning. However, most existing algorithms may fail when dealing with real-world irregular data that behaves in a heavy-tailed manner. To address this issue, we study the stochastic convex and non-convex optimization problem for federated learning at edge and show how to handle heavy-tailed data while retaining the Byzantine resilience, communication efficiency and the optimal statistical error rates simultaneously. Specifically, we first present a Byzantine-resilient distributed gradient descent algorithm that can handle the heavy-tailed data and meanwhile converge under the standard assumptions. To reduce the communication overhead, we further propose another algorithm that incorporates gradient compression techniques to save communication costs during the learning process. Theoretical analysis shows that our algorithms achieve order-optimal statistical error rate in presence of Byzantine devices. Finally, we conduct extensive experiments on both synthetic and real-world datasets to verify the efficacy of our algorithms.