Abstract:Anomalies are common in network system monitoring. When manifested as network threats to be mitigated, service outages to be prevented, and security risks to be ameliorated, detecting such anomalous network behaviors becomes of great importance. However, the growing scale and complexity of the mobile communication networks, as well as the ever-increasing amount and dimensionality of the network surveillance data, make it extremely difficult to monitor a mobile network and discover abnormal network behaviors. Recent advances in machine learning allow for obtaining near-optimal solutions to complicated decision-making problems with many sources of uncertainty that cannot be accurately characterized by traditional mathematical models. However, most machine learning algorithms are centralized, which renders them inapplicable to a large-scale distributed wireless networks with tens of millions of mobile devices. In this article, we present fog intelligence, a distributed machine learning architecture that enables intelligent wireless network management. It preserves the advantage of both edge processing and centralized cloud computing. In addition, the proposed architecture is scalable, privacy-preserving, and well suited for intelligent management of a distributed wireless network.
Abstract:Network traffic prediction techniques have attracted much attention since they are valuable for network congestion control and user experience improvement. While existing prediction techniques can achieve favorable performance when there is sufficient training data, it remains a great challenge to make accurate predictions when only a small amount of training data is available. To tackle this problem, we propose a deep learning model, entitled MetaSTNet, based on a multimodal meta-learning framework. It is an end-to-end network architecture that trains the model in a simulator and transfers the meta-knowledge to a real-world environment, which can quickly adapt and obtain accurate predictions on a new task with only a small amount of real-world training data. In addition, we further employ cross conformal prediction to assess the calibrated prediction intervals. Extensive experiments have been conducted on real-world datasets to illustrate the efficiency and effectiveness of MetaSTNet.
Abstract:Network traffic prediction plays a crucial role in intelligent network operation. Traditional prediction methods often rely on centralized training, necessitating the transfer of vast amounts of traffic data to a central server. This approach can lead to latency and privacy concerns. To address these issues, federated learning integrated with differential privacy has emerged as a solution to improve data privacy and model robustness in distributed settings. Nonetheless, existing federated learning protocols are vulnerable to Byzantine attacks, which may significantly compromise model robustness. Developing a robust and privacy-preserving prediction model in the presence of Byzantine clients remains a significant challenge. To this end, we propose an asynchronous differential federated learning framework based on distributionally robust optimization. The proposed framework utilizes multiple clients to train the prediction model collaboratively with local differential privacy. In addition, regularization techniques have been employed to further improve the Byzantine robustness of the models. We have conducted extensive experiments on three real-world datasets, and the results elucidate that our proposed distributed algorithm can achieve superior performance over existing methods.
Abstract:Presentation Attack Detection and Face Forgery Detection are designed to protect face data from physical media-based Presentation Attacks and digital editing-based DeepFakes respectively. But separate training of these two models makes them vulnerable to unknown attacks and burdens deployment environments. The lack of a Unified Face Attack Detection model to handle both types of attacks is mainly due to two factors. First, there's a lack of adequate benchmarks for models to explore. Existing UAD datasets have limited attack types and samples, restricting the model's ability to address advanced threats. To address this, we propose UniAttackDataPlus (UniAttackData+), the most extensive and sophisticated collection of forgery techniques to date. It includes 2,875 identities and their 54 kinds of falsified samples, totaling 697,347 videos. Second, there's a lack of a reliable classification criterion. Current methods try to find an arbitrary criterion within the same semantic space, which fails when encountering diverse attacks. So, we present a novel Visual-Language Model-based Hierarchical Prompt Tuning Framework (HiPTune) that adaptively explores multiple classification criteria from different semantic spaces. We build a Visual Prompt Tree to explore various classification rules hierarchically. Then, by adaptively pruning the prompts, the model can select the most suitable prompts to guide the encoder to extract discriminative features at different levels in a coarse-to-fine way. Finally, to help the model understand the classification criteria in visual space, we propose a Dynamically Prompt Integration module to project the visual prompts to the text encoder for more accurate semantics. Experiments on 12 datasets have shown the potential to inspire further innovations in the UAD field.
Abstract:Cost-aware Dynamic Workflow Scheduling (CADWS) is a key challenge in cloud computing, focusing on devising an effective scheduling policy to efficiently schedule dynamically arriving workflow tasks, represented as Directed Acyclic Graphs (DAG), to suitable virtual machines (VMs). Deep reinforcement learning (DRL) has been widely employed for automated scheduling policy design. However, the performance of DRL is heavily influenced by the design of the problem-tailored policy network and is highly sensitive to hyperparameters and the design of reward feedback. Considering the above-mentioned issues, this study proposes a novel DRL method combining Graph Attention Networks-based policy network and Evolution Strategy, referred to as GATES. The contributions of GATES are summarized as follows: (1) GATES can capture the impact of current task scheduling on subsequent tasks by learning the topological relationships between tasks in a DAG. (2) GATES can learn the importance of each VM to ready tasks, increasing the chance of selecting the optimal VM. (3) Utilizing Evolution Strategy's robustness, exploratory nature, and tolerance for delayed rewards, GATES achieves stable policy learning in CADWS. Extensive experimental results demonstrate the superiority of the proposed GATES in CADWS, outperforming several state-of-the-art algorithms. Codes are available at: https://github.com/YaShen998/GATES
Abstract:Community detection, a vital technology for real-world applications, uncovers cohesive node groups (communities) by leveraging both topological and attribute similarities in social networks. However, existing Graph Convolutional Networks (GCNs) trained to maximize modularity often converge to suboptimal solutions. Additionally, directly using human-labeled communities for training can undermine topological cohesiveness by grouping disconnected nodes based solely on node attributes. We address these issues by proposing a novel Topological and Attributive Similarity-based Community detection (TAS-Com) method. TAS-Com introduces a novel loss function that exploits the highly effective and scalable Leiden algorithm to detect community structures with global optimal modularity. Leiden is further utilized to refine human-labeled communities to ensure connectivity within each community, enabling TAS-Com to detect community structures with desirable trade-offs between modularity and compliance with human labels. Experimental results on multiple benchmark networks confirm that TAS-Com can significantly outperform several state-of-the-art algorithms.
Abstract:Large language models (LLMs) demonstrate remarkable text comprehension and generation capabilities but often lack the ability to utilize up-to-date or domain-specific knowledge not included in their training data. To address this gap, we introduce KEDiT, an efficient method for fine-tuning LLMs for knowledge-grounded dialogue generation. KEDiT operates in two main phases: first, it employs an information bottleneck to compress retrieved knowledge into learnable parameters, retaining essential information while minimizing computational overhead. Second, a lightweight knowledge-aware adapter integrates these compressed knowledge vectors into the LLM during fine-tuning, updating less than 2\% of the model parameters. The experimental results on the Wizard of Wikipedia and a newly constructed PubMed-Dialog dataset demonstrate that KEDiT excels in generating contextually relevant and informative responses, outperforming competitive baselines in automatic, LLM-based, and human evaluations. This approach effectively combines the strengths of pretrained LLMs with the adaptability needed for incorporating dynamic knowledge, presenting a scalable solution for fields such as medicine.
Abstract:The challenge of Domain Generalization (DG) in Face Anti-Spoofing (FAS) is the significant interference of domain-specific signals on subtle spoofing clues. Recently, some CLIP-based algorithms have been developed to alleviate this interference by adjusting the weights of visual classifiers. However, our analysis of this class-wise prompt engineering suffers from two shortcomings for DG FAS: (1) The categories of facial categories, such as real or spoof, have no semantics for the CLIP model, making it difficult to learn accurate category descriptions. (2) A single form of prompt cannot portray the various types of spoofing. In this work, instead of class-wise prompts, we propose a novel Content-aware Composite Prompt Engineering (CCPE) that generates instance-wise composite prompts, including both fixed template and learnable prompts. Specifically, our CCPE constructs content-aware prompts from two branches: (1) Inherent content prompt explicitly benefits from abundant transferred knowledge from the instruction-based Large Language Model (LLM). (2) Learnable content prompts implicitly extract the most informative visual content via Q-Former. Moreover, we design a Cross-Modal Guidance Module (CGM) that dynamically adjusts unimodal features for fusion to achieve better generalized FAS. Finally, our CCPE has been validated for its effectiveness in multiple cross-domain experiments and achieves state-of-the-art (SOTA) results.
Abstract:Facial recognition systems are vulnerable to physical (e.g., printed photos) and digital (e.g., DeepFake) face attacks. Existing methods struggle to simultaneously detect physical and digital attacks due to: 1) significant intra-class variations between these attack types, and 2) the inadequacy of spatial information alone to comprehensively capture live and fake cues. To address these issues, we propose a unified attack detection model termed Frequency-Aware and Attack-Agnostic CLIP (FA\textsuperscript{3}-CLIP), which introduces attack-agnostic prompt learning to express generic live and fake cues derived from the fusion of spatial and frequency features, enabling unified detection of live faces and all categories of attacks. Specifically, the attack-agnostic prompt module generates generic live and fake prompts within the language branch to extract corresponding generic representations from both live and fake faces, guiding the model to learn a unified feature space for unified attack detection. Meanwhile, the module adaptively generates the live/fake conditional bias from the original spatial and frequency information to optimize the generic prompts accordingly, reducing the impact of intra-class variations. We further propose a dual-stream cues fusion framework in the vision branch, which leverages frequency information to complement subtle cues that are difficult to capture in the spatial domain. In addition, a frequency compression block is utilized in the frequency stream, which reduces redundancy in frequency features while preserving the diversity of crucial cues. We also establish new challenging protocols to facilitate unified face attack detection effectiveness. Experimental results demonstrate that the proposed method significantly improves performance in detecting physical and digital face attacks, achieving state-of-the-art results.
Abstract:Recently, the generation of dynamic 3D objects from a video has shown impressive results. Existing methods directly optimize Gaussians using whole information in frames. However, when dynamic regions are interwoven with static regions within frames, particularly if the static regions account for a large proportion, existing methods often overlook information in dynamic regions and are prone to overfitting on static regions. This leads to producing results with blurry textures. We consider that decoupling dynamic-static features to enhance dynamic representations can alleviate this issue. Thus, we propose a dynamic-static feature decoupling module (DSFD). Along temporal axes, it regards the portions of current frame features that possess significant differences relative to reference frame features as dynamic features. Conversely, the remaining parts are the static features. Then, we acquire decoupled features driven by dynamic features and current frame features. Moreover, to further enhance the dynamic representation of decoupled features from different viewpoints and ensure accurate motion prediction, we design a temporal-spatial similarity fusion module (TSSF). Along spatial axes, it adaptively selects a similar information of dynamic regions. Hinging on the above, we construct a novel approach, DS4D. Experimental results verify our method achieves state-of-the-art (SOTA) results in video-to-4D. In addition, the experiments on a real-world scenario dataset demonstrate its effectiveness on the 4D scene. Our code will be publicly available.