Abstract:Visual Prompting (VP), an efficient method for transfer learning, has shown its potential in vision tasks. However, previous works focus exclusively on VP from standard source models, it is still unknown how it performs under the scenario of a robust source model: Can the robustness of the source model be successfully inherited? Does VP also encounter the same trade-off between robustness and generalization ability as the source model during this process? If such a trade-off exists, is there a strategy specifically tailored to VP to mitigate this limitation? In this paper, we thoroughly explore these three questions for the first time and provide affirmative answers to them. To mitigate the trade-off faced by VP, we propose a strategy called Prompt Boundary Loosening (PBL). As a lightweight, plug-and-play strategy naturally compatible with VP, PBL effectively ensures the successful inheritance of robustness when the source model is a robust model, while significantly enhancing VP's generalization ability across various downstream datasets. Extensive experiments across various datasets show that our findings are universal and demonstrate the significant benefits of the proposed strategy.
Abstract:Hypergraphs offer superior modeling capabilities for social networks, particularly in capturing group phenomena that extend beyond pairwise interactions in rumor propagation. Existing approaches in rumor source detection predominantly focus on dyadic interactions, which inadequately address the complexity of more intricate relational structures. In this study, we present a novel approach for Source Detection in Hypergraphs (HyperDet) via Interactive Relationship Construction and Feature-rich Attention Fusion. Specifically, our methodology employs an Interactive Relationship Construction module to accurately model both the static topology and dynamic interactions among users, followed by the Feature-rich Attention Fusion module, which autonomously learns node features and discriminates between nodes using a self-attention mechanism, thereby effectively learning node representations under the framework of accurately modeled higher-order relationships. Extensive experimental validation confirms the efficacy of our HyperDet approach, showcasing its superiority relative to current state-of-the-art methods.
Abstract:Source detection on graphs has demonstrated high efficacy in identifying rumor origins. Despite advances in machine learning-based methods, many fail to capture intrinsic dynamics of rumor propagation. In this work, we present SourceDetMamba: A Graph-aware State Space Model for Source Detection in Sequential Hypergraphs, which harnesses the recent success of the state space model Mamba, known for its superior global modeling capabilities and computational efficiency, to address this challenge. Specifically, we first employ hypergraphs to model high-order interactions within social networks. Subsequently, temporal network snapshots generated during the propagation process are sequentially fed in reverse order into Mamba to infer underlying propagation dynamics. Finally, to empower the sequential model to effectively capture propagation patterns while integrating structural information, we propose a novel graph-aware state update mechanism, wherein the state of each node is propagated and refined by both temporal dependencies and topological context. Extensive evaluations on eight datasets demonstrate that SourceDetMamba consistently outperforms state-of-the-art approaches.
Abstract:Deep neural networks (DNNs) often exhibit overconfidence when encountering out-of-distribution (OOD) samples, posing significant challenges for deployment. Since DNNs are trained on in-distribution (ID) datasets, the information flow of ID samples through DNNs inevitably differs from that of OOD samples. In this paper, we propose an Entropy-based Out-Of-distribution Detection (EOOD) framework. EOOD first identifies specific block where the information flow differences between ID and OOD samples are more pronounced, using both ID and pseudo-OOD samples. It then calculates the conditional entropy on the selected block as the OOD confidence score. Comprehensive experiments conducted across various ID and OOD settings demonstrate the effectiveness of EOOD in OOD detection and its superiority over state-of-the-art methods.
Abstract:Adversarial attacks on point clouds are crucial for assessing and improving the adversarial robustness of 3D deep learning models. Traditional solutions strictly limit point displacement during attacks, making it challenging to balance imperceptibility with adversarial effectiveness. In this paper, we attribute the inadequate imperceptibility of adversarial attacks on point clouds to deviations from the underlying surface. To address this, we introduce a novel point-to-surface (P2S) field that adjusts adversarial perturbation directions by dragging points back to their original underlying surface. Specifically, we use a denoising network to learn the gradient field of the logarithmic density function encoding the shape's surface, and apply a distance-aware adjustment to perturbation directions during attacks, thereby enhancing imperceptibility. Extensive experiments show that adversarial attacks guided by our P2S field are more imperceptible, outperforming state-of-the-art methods.
Abstract:Recent studies have shown that Hypergraph Neural Networks (HGNNs) are vulnerable to adversarial attacks. Existing approaches focus on hypergraph modification attacks guided by gradients, overlooking node spanning in the hypergraph and the group identity of hyperedges, thereby resulting in limited attack performance and detectable attacks. In this manuscript, we present a novel framework, i.e., Hypergraph Attacks via Injecting Homogeneous Nodes into Elite Hyperedges (IE-Attack), to tackle these challenges. Initially, utilizing the node spanning in the hypergraph, we propose the elite hyperedges sampler to identify hyperedges to be injected. Subsequently, a node generator utilizing Kernel Density Estimation (KDE) is proposed to generate the homogeneous node with the group identity of hyperedges. Finally, by injecting the homogeneous node into elite hyperedges, IE-Attack improves the attack performance and enhances the imperceptibility of attacks. Extensive experiments are conducted on five authentic datasets to validate the effectiveness of IE-Attack and the corresponding superiority to state-of-the-art methods.
Abstract:Given some video-query pairs with untrimmed videos and sentence queries, temporal sentence grounding (TSG) aims to locate query-relevant segments in these videos. Although previous respectable TSG methods have achieved remarkable success, they train each video-query pair separately and ignore the relationship between different pairs. We observe that the similar video/query content not only helps the TSG model better understand and generalize the cross-modal representation but also assists the model in locating some complex video-query pairs. Previous methods follow a single-thread framework that cannot co-train different pairs and usually spends much time re-obtaining redundant knowledge, limiting their real-world applications. To this end, in this paper, we pose a brand-new setting: Multi-Pair TSG, which aims to co-train these pairs. In particular, we propose a novel video-query co-training approach, Multi-Thread Knowledge Transfer Network, to locate a variety of video-query pairs effectively and efficiently. Firstly, we mine the spatial and temporal semantics across different queries to cooperate with each other. To learn intra- and inter-modal representations simultaneously, we design a cross-modal contrast module to explore the semantic consistency by a self-supervised strategy. To fully align visual and textual representations between different pairs, we design a prototype alignment strategy to 1) match object prototypes and phrase prototypes for spatial alignment, and 2) align activity prototypes and sentence prototypes for temporal alignment. Finally, we develop an adaptive negative selection module to adaptively generate a threshold for cross-modal matching. Extensive experiments show the effectiveness and efficiency of our proposed method.
Abstract:Graph Neural Network (GNN)-based fake news detectors apply various methods to construct graphs, aiming to learn distinctive news embeddings for classification. Since the construction details are unknown for attackers in a black-box scenario, it is unrealistic to conduct the classical adversarial attacks that require a specific adjacency matrix. In this paper, we propose the first general black-box adversarial attack framework, i.e., General Attack via Fake Social Interaction (GAFSI), against detectors based on different graph structures. Specifically, as sharing is an important social interaction for GNN-based fake news detectors to construct the graph, we simulate sharing behaviors to fool the detectors. Firstly, we propose a fraudster selection module to select engaged users leveraging local and global information. In addition, a post injection module guides the selected users to create shared relations by sending posts. The sharing records will be added to the social context, leading to a general attack against different detectors. Experimental results on empirical datasets demonstrate the effectiveness of GAFSI.
Abstract:Since the inception of the Transformer architecture in 2017, Large Language Models (LLMs) such as GPT and BERT have evolved significantly, impacting various industries with their advanced capabilities in language understanding and generation. These models have shown potential to transform the medical field, highlighting the necessity for specialized evaluation frameworks to ensure their effective and ethical deployment. This comprehensive survey delineates the extensive application and requisite evaluation of LLMs within healthcare, emphasizing the critical need for empirical validation to fully exploit their capabilities in enhancing healthcare outcomes. Our survey is structured to provide an in-depth analysis of LLM applications across clinical settings, medical text data processing, research, education, and public health awareness. We begin by exploring the roles of LLMs in different medical applications, detailing how they are evaluated based on their performance in tasks such as clinical application, medical text data processing, information retrieval, data analysis, medical scientific writing, educational content generation etc. The subsequent sections delve into the methodologies employed in these evaluations, discussing the benchmarks and metrics used to assess the models' effectiveness, accuracy, and ethical alignment. Through this survey, we aim to equip healthcare professionals, researchers, and policymakers with a comprehensive understanding of the potential strengths and limitations of LLMs in medical applications. By providing detailed insights into the evaluation processes and the challenges faced in integrating LLMs into healthcare, this survey seeks to guide the responsible development and deployment of these powerful models, ensuring they are harnessed to their full potential while maintaining stringent ethical standards.
Abstract:Source detection in graphs has demonstrated robust efficacy in the domain of rumor source identification. Although recent solutions have enhanced performance by leveraging deep neural networks, they often require complete user data. In this paper, we address a more challenging task, rumor source detection with incomplete user data, and propose a novel framework, i.e., Source Detection in Graphs with Incomplete Nodes via Positional Encoding and Attentive Fusion (GIN-SD), to tackle this challenge. Specifically, our approach utilizes a positional embedding module to distinguish nodes that are incomplete and employs a self-attention mechanism to focus on nodes with greater information transmission capacity. To mitigate the prediction bias caused by the significant disparity between the numbers of source and non-source nodes, we also introduce a class-balancing mechanism. Extensive experiments validate the effectiveness of GIN-SD and its superiority to state-of-the-art methods.