Abstract:In this study, we leverage LLM to enhance the semantic analysis and develop similarity metrics for texts, addressing the limitations of traditional unsupervised NLP metrics like ROUGE and BLEU. We develop a framework where LLMs such as GPT-4 are employed for zero-shot text identification and label generation for radiology reports, where the labels are then used as measurements for text similarity. By testing the proposed framework on the MIMIC data, we find that GPT-4 generated labels can significantly improve the semantic similarity assessment, with scores more closely aligned with clinical ground truth than traditional NLP metrics. Our work demonstrates the possibility of conducting semantic analysis of the text data using semi-quantitative reasoning results by the LLMs for highly specialized domains. While the framework is implemented for radiology report similarity analysis, its concept can be extended to other specialized domains as well.
Abstract:In this study, we introduce PharmacyGPT, a novel framework to assess the capabilities of large language models (LLMs) such as ChatGPT and GPT-4 in emulating the role of clinical pharmacists. Our methodology encompasses the utilization of LLMs to generate comprehensible patient clusters, formulate medication plans, and forecast patient outcomes. We conduct our investigation using real data acquired from the intensive care unit (ICU) at the University of North Carolina Chapel Hill (UNC) Hospital. Our analysis offers valuable insights into the potential applications and limitations of LLMs in the field of clinical pharmacy, with implications for both patient care and the development of future AI-driven healthcare solutions. By evaluating the performance of PharmacyGPT, we aim to contribute to the ongoing discourse surrounding the integration of artificial intelligence in healthcare settings, ultimately promoting the responsible and efficacious use of such technologies.