Recent developments in domains such as non-local games, quantum interactive proofs, and quantum generative adversarial networks have renewed interest in quantum game theory and, specifically, quantum zero-sum games. Central to classical game theory is the efficient algorithmic computation of Nash equilibria, which represent optimal strategies for both players. In 2008, Jain and Watrous proposed the first classical algorithm for computing equilibria in quantum zero-sum games using the Matrix Multiplicative Weight Updates (MMWU) method to achieve a convergence rate of $\mathcal{O}(d/\epsilon^2)$ iterations to $\epsilon$-Nash equilibria in the $4^d$-dimensional spectraplex. In this work, we propose a hierarchy of quantum optimization algorithms that generalize MMWU via an extra-gradient mechanism. Notably, within this proposed hierarchy, we introduce the Optimistic Matrix Multiplicative Weights Update (OMMWU) algorithm and establish its average-iterate convergence complexity as $\mathcal{O}(d/\epsilon)$ iterations to $\epsilon$-Nash equilibria. This quadratic speed-up relative to Jain and Watrous' original algorithm sets a new benchmark for computing $\epsilon$-Nash equilibria in quantum zero-sum games.
Online gradient descent (OGD) is well known to be doubly optimal under strong convexity or monotonicity assumptions: (1) in the single-agent setting, it achieves an optimal regret of $\Theta(\log T)$ for strongly convex cost functions; and (2) in the multi-agent setting of strongly monotone games, with each agent employing OGD, we obtain last-iterate convergence of the joint action to a unique Nash equilibrium at an optimal rate of $\Theta(\frac{1}{T})$. While these finite-time guarantees highlight its merits, OGD has the drawback that it requires knowing the strong convexity/monotonicity parameters. In this paper, we design a fully adaptive OGD algorithm, \textsf{AdaOGD}, that does not require a priori knowledge of these parameters. In the single-agent setting, our algorithm achieves $O(\log^2(T))$ regret under strong convexity, which is optimal up to a log factor. Further, if each agent employs \textsf{AdaOGD} in strongly monotone games, the joint action converges in a last-iterate sense to a unique Nash equilibrium at a rate of $O(\frac{\log^3 T}{T})$, again optimal up to log factors. We illustrate our algorithms in a learning version of the classical newsvendor problem, where due to lost sales, only (noisy) gradient feedback can be observed. Our results immediately yield the first feasible and near-optimal algorithm for both the single-retailer and multi-retailer settings. We also extend our results to the more general setting of exp-concave cost functions and games, using the online Newton step (ONS) algorithm.
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples. Recent works suggest that these estimators are more statistically efficient than plug-in (linear programming-based) OT estimators when comparing probability measures in high-dimensions~\citep{Vacher-2021-Dimension}. Unfortunately, that statistical benefit comes at a very steep computational price: because their computation relies on the short-step interior-point method (SSIPM), which comes with a large iteration count in practice, these estimators quickly become intractable w.r.t. sample size $n$. To scale these estimators to larger $n$, we propose a nonsmooth fixed-point model for the kernel-based OT problem, and show that it can be efficiently solved via a specialized semismooth Newton (SSN) method: We show, exploring the problem's structure, that the per-iteration cost of performing one SSN step can be significantly reduced in practice. We prove that our SSN method achieves a global convergence rate of $O(1/\sqrt{k})$, and a local quadratic convergence rate under standard regularity conditions. We show substantial speedups over SSIPM on both synthetic and real datasets.
We introduce Conformal Decision Theory, a framework for producing safe autonomous decisions despite imperfect machine learning predictions. Examples of such decisions are ubiquitous, from robot planning algorithms that rely on pedestrian predictions, to calibrating autonomous manufacturing to exhibit high throughput and low error, to the choice of trusting a nominal policy versus switching to a safe backup policy at run-time. The decisions produced by our algorithms are safe in the sense that they come with provable statistical guarantees of having low risk without any assumptions on the world model whatsoever; the observations need not be I.I.D. and can even be adversarial. The theory extends results from conformal prediction to calibrate decisions directly, without requiring the construction of prediction sets. Experiments demonstrate the utility of our approach in robot motion planning around humans, automated stock trading, and robot manufacturing.
The rapid progress in machine learning in recent years has been based on a highly productive connection to gradient-based optimization. Further progress hinges in part on a shift in focus from pattern recognition to decision-making and multi-agent problems. In these broader settings, new mathematical challenges emerge that involve equilibria and game theory instead of optima. Gradient-based methods remain essential -- given the high dimensionality and large scale of machine-learning problems -- but simple gradient descent is no longer the point of departure for algorithm design. We provide a gentle introduction to a broader framework for gradient-based algorithms in machine learning, beginning with saddle points and monotone games, and proceeding to general variational inequalities. While we provide convergence proofs for several of the algorithms that we present, our main focus is that of providing motivation and intuition.
Motivated by the emergence of decentralized machine learning ecosystems, we study the delegation of data collection. Taking the field of contract theory as our starting point, we design optimal and near-optimal contracts that deal with two fundamental machine learning challenges: lack of certainty in the assessment of model quality and lack of knowledge regarding the optimal performance of any model. We show that lack of certainty can be dealt with via simple linear contracts that achieve 1-1/e fraction of the first-best utility, even if the principal has a small test set. Furthermore, we give sufficient conditions on the size of the principal's test set that achieves a vanishing additive approximation to the optimal utility. To address the lack of a priori knowledge regarding the optimal performance, we give a convex program that can adaptively and efficiently compute the optimal contract.
We present Scaff-PD, a fast and communication-efficient algorithm for distributionally robust federated learning. Our approach improves fairness by optimizing a family of distributionally robust objectives tailored to heterogeneous clients. We leverage the special structure of these objectives, and design an accelerated primal dual (APD) algorithm which uses bias corrected local steps (as in Scaffold) to achieve significant gains in communication efficiency and convergence speed. We evaluate Scaff-PD on several benchmark datasets and demonstrate its effectiveness in improving fairness and robustness while maintaining competitive accuracy. Our results suggest that Scaff-PD is a promising approach for federated learning in resource-constrained and heterogeneous settings.
Contemporary scientific research is a distributed, collaborative endeavor, carried out by teams of researchers, regulatory institutions, funding agencies, commercial partners, and scientific bodies, all interacting with each other and facing different incentives. To maintain scientific rigor, statistical methods should acknowledge this state of affairs. To this end, we study hypothesis testing when there is an agent (e.g., a researcher or a pharmaceutical company) with a private prior about an unknown parameter and a principal (e.g., a policymaker or regulator) who wishes to make decisions based on the parameter value. The agent chooses whether to run a statistical trial based on their private prior and then the result of the trial is used by the principal to reach a decision. We show how the principal can conduct statistical inference that leverages the information that is revealed by an agent's strategic behavior -- their choice to run a trial or not. In particular, we show how the principal can design a policy to elucidate partial information about the agent's private prior beliefs and use this to control the posterior probability of the null. One implication is a simple guideline for the choice of significance threshold in clinical trials: the type-I error level should be set to be strictly less than the cost of the trial divided by the firm's profit if the trial is successful.
We present a method for solving general nonconvex-strongly-convex bilevel optimization problems. Our method -- the \emph{Restarted Accelerated HyperGradient Descent} (\texttt{RAHGD}) method -- finds an $\epsilon$-first-order stationary point of the objective with $\tilde{\mathcal{O}}(\kappa^{3.25}\epsilon^{-1.75})$ oracle complexity, where $\kappa$ is the condition number of the lower-level objective and $\epsilon$ is the desired accuracy. We also propose a perturbed variant of \texttt{RAHGD} for finding an $\big(\epsilon,\mathcal{O}(\kappa^{2.5}\sqrt{\epsilon}\,)\big)$-second-order stationary point within the same order of oracle complexity. Our results achieve the best-known theoretical guarantees for finding stationary points in bilevel optimization and also improve upon the existing upper complexity bound for finding second-order stationary points in nonconvex-strongly-concave minimax optimization problems, setting a new state-of-the-art benchmark. Empirical studies are conducted to validate the theoretical results in this paper.