Models, code, and papers for "representation learning":

The problems of shape classification and part segmentation from 3D point clouds have garnered increasing attention in the last few years. But both of these problems suffer from relatively small training sets, creating the need for statistically efficient methods to learn 3D shape representations. In this work, we investigate the use of Approximate Convex Decompositions (ACD) as a self-supervisory signal for label-efficient learning of point cloud representations. Decomposing a 3D shape into simpler constituent parts or primitives is a fundamental problem in geometrical shape processing. There has been extensive work on such decompositions, where the criterion for simplicity of a constituent shape is often defined in terms of convexity for solid primitives. In this paper, we show that using the results of ACD to approximate a ground truth segmentation provides excellent self-supervision for learning 3D point cloud representations that are highly effective on downstream tasks. We report improvements over the state-of-theart in unsupervised representation learning on the ModelNet40 shape classification dataset and significant gains in few-shot part segmentation on the ShapeNetPart dataset. Code available at https://github.com/matheusgadelha/PointCloudLearningACD

A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.

A continual learning agent should be able to build on top of existing knowledge to learn on new data quickly while minimizing forgetting. Current intelligent systems based on neural network function approximators arguably do the opposite---they are highly prone to forgetting and rarely trained to facilitate future learning. One reason for this poor behavior is that they learn from a representation that is not explicitly trained for these two goals. In this paper, we propose MRCL, an objective to explicitly learn representations that accelerate future learning and are robust to forgetting under online updates in continual learning. The idea is to optimize the representation such that online updates minimize error on all samples with little forgetting. We show that it is possible to learn representations that are more effective for online updating and that sparsity naturally emerges in these representations. Moreover, our method is complementary to existing continual learning strategies, like MER, which can learn more effectively from representations learned by our objective. Finally, we demonstrate that a basic online updating strategy with our learned representation is competitive with rehearsal based methods for continual learning. We release an implementation of our method at https://github.com/khurramjaved96/mrcl .

This paper proposes inverse feature learning as a novel supervised feature learning technique that learns a set of high-level features for classification based on an error representation approach. The key contribution of this method is to learn the representation of error as high-level features, while current representation learning methods interpret error by loss functions which are obtained as a function of differences between the true labels and the predicted ones. One advantage of such learning method is that the learned features for each class are independent of learned features for other classes; therefore, this method can learn simultaneously meaning that it can learn new classes without retraining. Error representation learning can also help with generalization and reduce the chance of over-fitting by adding a set of impactful features to the original data set which capture the relationships between each instance and different classes through an error generation and analysis process. This method can be particularly effective in data sets, where the instances of each class have diverse feature representations or the ones with imbalanced classes. The experimental results show that the proposed method results in significantly better performance compared to the state-of-the-art classification techniques for several popular data sets. We hope this paper can open a new path to utilize the proposed perspective of error representation learning in different feature learning domains.

Since about 100 years ago, to learn the intrinsic structure of data, many representation learning approaches have been proposed, including both linear ones and nonlinear ones, supervised ones and unsupervised ones. Particularly, deep architectures are widely applied for representation learning in recent years, and have delivered top results in many tasks, such as image classification, object detection and speech recognition. In this paper, we review the development of data representation learning methods. Specifically, we investigate both traditional feature learning algorithms and state-of-the-art deep learning models. The history of data representation learning is introduced, while available resources (e.g. online course, tutorial and book information) and toolboxes are provided. Finally, we conclude this paper with remarks and some interesting research directions on data representation learning.

Sparse representations have been shown to be useful in deep reinforcement learning for mitigating catastrophic interference and improving the performance of agents in terms of cumulative reward. Previous results were based on a two step process were the representation was learned offline and the action-value function was learned online afterwards. In this paper, we investigate if it is possible to learn a sparse representation and the action-value function simultaneously and incrementally. We investigate this question by employing several regularization techniques and observing how they affect sparsity of the representation learned by a DQN agent in two different benchmark domains. Our results show that with appropriate regularization it is possible to increase the sparsity of the representations learned by DQN agents. Moreover, we found that learning sparse representations also resulted in improved performance in terms of cumulative reward. Finally, we found that the performance of the agents that learned a sparse representation was more robust to the size of the experience replay buffer. This last finding supports the long standing hypothesis that the overlap in representations learned by deep neural networks is the leading cause of catastrophic interference.

A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple experts' trajectories are available. We formulate representation learning as a bi-level optimization problem where the "outer" optimization tries to learn the joint representation and the "inner" optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.

This paper studies few-shot learning via representation learning, where one uses $T$ source tasks with $n_1$ data per task to learn a representation in order to reduce the sample complexity of a target task for which there is only $n_2 (\ll n_1)$ data. Specifically, we focus on the setting where there exists a good \emph{common representation} between source and target, and our goal is to understand how much of a sample size reduction is possible. First, we study the setting where this common representation is low-dimensional and provide a fast rate of $O\left(\frac{\mathcal{C}\left(\Phi\right)}{n_1T} + \frac{k}{n_2}\right)$; here, $\Phi$ is the representation function class, $\mathcal{C}\left(\Phi\right)$ is its complexity measure, and $k$ is the dimension of the representation. When specialized to linear representation functions, this rate becomes $O\left(\frac{dk}{n_1T} + \frac{k}{n_2}\right)$ where $d (\gg k)$ is the ambient input dimension, which is a substantial improvement over the rate without using representation learning, i.e. over the rate of $O\left(\frac{d}{n_2}\right)$. Second, we consider the setting where the common representation may be high-dimensional but is capacity-constrained (say in norm); here, we again demonstrate the advantage of representation learning in both high-dimensional linear regression and neural network learning. Our results demonstrate representation learning can fully utilize all $n_1T$ samples from source tasks.

Reinforcement learning (RL) algorithms allow artificial agents to improve their selection of actions to increase rewarding experiences in their environments. Temporal Difference (TD) Learning -- a model-free RL method -- is a leading account of the midbrain dopamine system and the basal ganglia in reinforcement learning. These algorithms typically learn a mapping from the agent's current sensed state to a selected action (known as a policy function) via learning a value function (expected future rewards). TD Learning methods have been very successful on a broad range of control tasks, but learning can become intractably slow as the state space of the environment grows. This has motivated methods that learn internal representations of the agent's state, effectively reducing the size of the state space and restructuring state representations in order to support generalization. However, TD Learning coupled with an artificial neural network, as a function approximator, has been shown to fail to learn some fairly simple control tasks, challenging this explanation of reward-based learning. We hypothesize that such failures do not arise in the brain because of the ubiquitous presence of lateral inhibition in the cortex, producing sparse distributed internal representations that support the learning of expected future reward. The sparse conjunctive representations can avoid catastrophic interference while still supporting generalization. We provide support for this conjecture through computational simulations, demonstrating the benefits of learned sparse representations for three problematic classic control tasks: Puddle-world, Mountain-car, and Acrobot.

Learning representations of data is an important problem in statistics and machine learning. While the origin of learning representations can be traced back to factor analysis and multidimensional scaling in statistics, it has become a central theme in deep learning with important applications in computer vision and computational neuroscience. In this article, we review recent advances in learning representations from a statistical perspective. In particular, we review the following two themes: (a) unsupervised learning of vector representations and (b) learning of both vector and matrix representations.

This paper introduces a novel perspective about error in machine learning and proposes inverse feature learning (IFL) as a representation learning approach that learns a set of high-level features based on the representation of error for classification or clustering purposes. The proposed perspective about error representation is fundamentally different from current learning methods, where in classification approaches they interpret the error as a function of the differences between the true labels and the predicted ones or in clustering approaches, in which the clustering objective functions such as compactness are used. Inverse feature learning method operates based on a deep clustering approach to obtain a qualitative form of the representation of error as features. The performance of the proposed IFL method is evaluated by applying the learned features along with the original features, or just using the learned features in different classification and clustering techniques for several data sets. The experimental results show that the proposed method leads to promising results in classification and especially in clustering. In classification, the proposed features along with the primary features improve the results of most of the classification methods on several popular data sets. In clustering, the performance of different clustering methods is considerably improved on different data sets. There are interesting results that show some few features of the representation of error capture highly informative aspects of primary features. We hope this paper helps to utilize the error representation learning in different feature learning domains.

Inspired by the success of deploying deep learning in the fields of Computer Vision and Natural Language Processing, this learning paradigm has also found its way into the field of Music Information Retrieval. In order to benefit from deep learning in an effective, but also efficient manner, deep transfer learning has become a common approach. In this approach, it is possible to reuse the output of a pre-trained neural network as the basis for a new learning task. The underlying hypothesis is that if the initial and new learning tasks show commonalities and are applied to the same type of input data (e.g. music audio), the generated deep representation of the data is also informative for the new task. Since, however, most of the networks used to generate deep representations are trained using a single initial learning source, the validity of the above hypothesis is questionable for an arbitrary future task. In this paper, we present the results of our investigation of what the most important factor to generate deep representations for the data and learning tasks in the music domain. We conducted this investigation via an extensive empirical study that involves multiple learning sources, as well as multiple deep learning architectures with varying levels of information sharing between sources, in order to learn music representations. We then validate these representations considering multiple target datasets for evaluation. The results of our experiments yield several insights on how to approach the design of methods for learning widely deployable deep data representations in the music domain.

It is widely believed that learning good representations is one of the main reasons for the success of deep neural networks. Although highly intuitive, there is a lack of theory and systematic approach quantitatively characterizing what representations do deep neural networks learn. In this work, we move a tiny step towards a theory and better understanding of the representations. Specifically, we study a simpler problem: How similar are the representations learned by two networks with identical architecture but trained from different initializations. We develop a rigorous theory based on the neuron activation subspace match model. The theory gives a complete characterization of the structure of neuron activation subspace matches, where the core concepts are maximum match and simple match which describe the overall and the finest similarity between sets of neurons in two networks respectively. We also propose efficient algorithms to find the maximum match and simple matches. Finally, we conduct extensive experiments using our algorithms. Experimental results suggest that, surprisingly, representations learned by the same convolutional layers of networks trained from different initializations are not as similar as prevalently expected, at least in terms of subspace match.

Most machine learning theory and practice is concerned with learning a single task. In this thesis it is argued that in general there is insufficient information in a single task for a learner to generalise well and that what is required for good generalisation is information about many similar learning tasks. Similar learning tasks form a body of prior information that can be used to constrain the learner and make it generalise better. Examples of learning scenarios in which there are many similar tasks are handwritten character recognition and spoken word recognition. The concept of the environment of a learner is introduced as a probability measure over the set of learning problems the learner might be expected to learn. It is shown how a sample from the environment may be used to learn a representation, or recoding of the input space that is appropriate for the environment. Learning a representation can equivalently be thought of as learning the appropriate features of the environment. Bounds are derived on the sample size required to ensure good generalisation from a representation learning process. These bounds show that under certain circumstances learning a representation appropriate for $n$ tasks reduces the number of examples required of each task by a factor of $n$. Once a representation is learnt it can be used to learn novel tasks from the same environment, with the result that far fewer examples are required of the new tasks to ensure good generalisation. Bounds are given on the number of tasks and the number of samples from each task required to ensure that a representation will be a good one for learning novel tasks. The results on representation learning are generalised to cover any form of automated hypothesis space bias.

The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning.

Deep learning owes its success to three key factors: scale of data, enhanced models to learn representations from data, and scale of computation. This book chapter presented the importance of the data-driven approach to learn good representations from both big data and small data. In terms of big data, it has been widely accepted in the research community that the more data the better for both representation and classification improvement. The question is then how to learn representations from big data, and how to perform representation learning when data is scarce. We addressed the first question by presenting CNN model enhancements in the aspects of representation, optimization, and generalization. To address the small data challenge, we showed transfer representation learning to be effective. Transfer representation learning transfers the learned representation from a source domain where abundant training data is available to a target domain where training data is scarce. Transfer representation learning gave the OM and melanoma diagnosis modules of our XPRIZE Tricorder device (which finished $2^{nd}$ out of $310$ competing teams) a significant boost in diagnosis accuracy.

A variety of representation learning approaches have been investigated for reinforcement learning; much less attention, however, has been given to investigating the utility of sparse coding. Outside of reinforcement learning, sparse coding representations have been widely used, with non-convex objectives that result in discriminative representations. In this work, we develop a supervised sparse coding objective for policy evaluation. Despite the non-convexity of this objective, we prove that all local minima are global minima, making the approach amenable to simple optimization strategies. We empirically show that it is key to use a supervised objective, rather than the more straightforward unsupervised sparse coding approach. We compare the learned representations to a canonical fixed sparse representation, called tile-coding, demonstrating that the sparse coding representation outperforms a wide variety of tilecoding representations.

We study the problem of representation learning in goal-conditioned hierarchical reinforcement learning. In such hierarchical structures, a higher-level controller solves tasks by iteratively communicating goals which a lower-level policy is trained to reach. Accordingly, the choice of representation -- the mapping of observation space to goal space -- is crucial. To study this problem, we develop a notion of sub-optimality of a representation, defined in terms of expected reward of the optimal hierarchical policy using this representation. We derive expressions which bound the sub-optimality and show how these expressions can be translated to representation learning objectives which may be optimized in practice. Results on a number of difficult continuous-control tasks show that our approach to representation learning yields qualitatively better representations as well as quantitatively better hierarchical policies, compared to existing methods (see videos at https://sites.google.com/view/representation-hrl).

Representation learning algorithms are designed to learn abstract features that characterize data. State representation learning (SRL) focuses on a particular kind of representation learning where learned features are in low dimension, evolve through time, and are influenced by actions of an agent. The representation is learned to capture the variation in the environment generated by the agent's actions; this kind of representation is particularly suitable for robotics and control scenarios. In particular, the low dimension characteristic of the representation helps to overcome the curse of dimensionality, provides easier interpretation and utilization by humans and can help improve performance and speed in policy learning algorithms such as reinforcement learning. This survey aims at covering the state-of-the-art on state representation learning in the most recent years. It reviews different SRL methods that involve interaction with the environment, their implementations and their applications in robotics control tasks (simulated or real). In particular, it highlights how generic learning objectives are differently exploited in the reviewed algorithms. Finally, it discusses evaluation methods to assess the representation learned and summarizes current and future lines of research.

Representation learning is a central challenge across a range of machine learning areas. In reinforcement learning, effective and functional representations have the potential to tremendously accelerate learning progress and solve more challenging problems. Most prior work on representation learning has focused on generative approaches, learning representations that capture all underlying factors of variation in the observation space in a more disentangled or well-ordered manner. In this paper, we instead aim to learn functionally salient representations: representations that are not necessarily complete in terms of capturing all factors of variation in the observation space, but rather aim to capture those factors of variation that are important for decision making -- that are "actionable." These representations are aware of the dynamics of the environment, and capture only the elements of the observation that are necessary for decision making rather than all factors of variation, without explicit reconstruction of the observation. We show how these representations can be useful to improve exploration for sparse reward problems, to enable long horizon hierarchical reinforcement learning, and as a state representation for learning policies for downstream tasks. We evaluate our method on a number of simulated environments, and compare it to prior methods for representation learning, exploration, and hierarchical reinforcement learning.