What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
May 13, 2025
Abstract:Most work in AI music generation focused on audio, which has seen limited use in the music production industry due to its rigidity. To maximize flexibility while assuming only textual instructions from producers, we are among the first to tackle symbolic music editing. We circumvent the known challenge of lack of labeled data by proving that LLMs with zero-shot prompting can effectively edit drum grooves. The recipe of success is a creatively designed format that interfaces LLMs and music, while we facilitate evaluation by providing an evaluation dataset with annotated unit tests that highly aligns with musicians' judgment.
Via

May 20, 2025
Abstract:The text generation paradigm for audio tasks has opened new possibilities for unified audio understanding. However, existing models face significant challenges in achieving a comprehensive understanding across diverse audio types, such as speech, general audio events, and music. Furthermore, their exclusive reliance on cross-entropy loss for alignment often falls short, as it treats all tokens equally and fails to account for redundant audio features, leading to weaker cross-modal alignment. To deal with the above challenges, this paper introduces U-SAM, an advanced audio language model that integrates specialized encoders for speech, audio, and music with a pre-trained large language model (LLM). U-SAM employs a Mixture of Experts (MoE) projector for task-aware feature fusion, dynamically routing and integrating the domain-specific encoder outputs. Additionally, U-SAM incorporates a Semantic-Aware Contrastive Loss Module, which explicitly identifies redundant audio features under language supervision and rectifies their semantic and spectral representations to enhance cross-modal alignment. Extensive experiments demonstrate that U-SAM consistently outperforms both specialized models and existing audio language models across multiple benchmarks. Moreover, it exhibits emergent capabilities on unseen tasks, showcasing its generalization potential. Code is available (https://github.com/Honee-W/U-SAM/).
* Accepted to Interspeech 2025
Via

May 30, 2025
Abstract:We present a universal high-fidelity neural audio compression algorithm that can compress speech, music, and general audio below 3 kbps bandwidth. Although current state-of-the-art audio codecs excel in audio compression, their effectiveness significantly declines when embedding space is sharply reduced, which corresponds to higher compression. To address this problem, we propose Residual Experts Vector Quantization (REVQ), which significantly expands the available embedding space and improves the performance while hardly sacrificing the bandwidth. Furthermore, we introduce a strategy to ensure that the vast embedding space can be fully utilized. Additionally, we propose a STFT-based discriminator to guide the generator in producing indistinguishable spectrograms. We demonstrate that the proposed approach outperforms baseline methods through detailed ablations.
* 5 pages,4 figures
Via

May 26, 2025
Abstract:We present ReverbFX, a new room impulse response (RIR) dataset designed for singing voice dereverberation research. Unlike existing datasets based on real recorded RIRs, ReverbFX features a diverse collection of RIRs captured from various reverb audio effect plugins commonly used in music production. We conduct comprehensive experiments using the proposed dataset to benchmark the challenge of dereverberation of singing voice recordings affected by artificial reverbs. We train two state-of-the-art generative models using ReverbFX and demonstrate that models trained with plugin-derived RIRs outperform those trained on realistic RIRs in artificial reverb scenarios.
* Submitted to ITG Conference on Speech Communication
Via

May 06, 2025
Abstract:The recent surge in the popularity of diffusion models for image synthesis has attracted new attention to their potential for generation tasks in other domains. However, their applications to symbolic music generation remain largely under-explored because symbolic music is typically represented as sequences of discrete events and standard diffusion models are not well-suited for discrete data. We represent symbolic music as image-like pianorolls, facilitating the use of diffusion models for the generation of symbolic music. Moreover, this study introduces a novel diffusion model that incorporates our proposed Transformer-Mamba block and learnable wavelet transform. Classifier-free guidance is utilised to generate symbolic music with target chords. Our evaluation shows that our method achieves compelling results in terms of music quality and controllability, outperforming the strong baseline in pianoroll generation. Our code is available at https://github.com/jinchengzhanggg/proffusion.
Via

May 14, 2025
Abstract:Human annotations of mood in music are essential for music generation and recommender systems. However, existing datasets predominantly focus on Western songs with mood terms derived from English, which may limit generalizability across diverse linguistic and cultural backgrounds. To address this, we introduce `GlobalMood', a novel cross-cultural benchmark dataset comprising 1,180 songs sampled from 59 countries, with large-scale annotations collected from 2,519 individuals across five culturally and linguistically distinct locations: U.S., France, Mexico, S. Korea, and Egypt. Rather than imposing predefined mood categories, we implement a bottom-up, participant-driven approach to organically elicit culturally specific music-related mood terms. We then recruit another pool of human participants to collect 988,925 ratings for these culture-specific descriptors. Our analysis confirms the presence of a valence-arousal structure shared across cultures, yet also reveals significant divergences in how certain mood terms, despite being dictionary equivalents, are perceived cross-culturally. State-of-the-art multimodal models benefit substantially from fine-tuning on our cross-culturally balanced dataset, as evidenced by improved alignment with human evaluations - particularly in non-English contexts. More broadly, our findings inform the ongoing debate on the universality versus cultural specificity of emotional descriptors, and our methodology can contribute to other multimodal and cross-lingual research.
Via

May 14, 2025
Abstract:In recent years, generative adversarial networks (GANs) have made significant progress in generating audio sequences. However, these models typically rely on bandwidth-limited mel-spectrograms, which constrain the resolution of generated audio sequences, and lead to mode collapse during conditional generation. To address this issue, we propose Deformable Periodic Network based GAN (DPN-GAN), a novel GAN architecture that incorporates a kernel-based periodic ReLU activation function to induce periodic bias in audio generation. This innovative approach enhances the model's ability to capture and reproduce intricate audio patterns. In particular, our proposed model features a DPN module for multi-resolution generation utilizing deformable convolution operations, allowing for adaptive receptive fields that improve the quality and fidelity of the synthetic audio. Additionally, we enhance the discriminator network using deformable convolution to better distinguish between real and generated samples, further refining the audio quality. We trained two versions of the model: DPN-GAN small (38.67M parameters) and DPN-GAN large (124M parameters). For evaluation, we use five different datasets, covering both speech synthesis and music generation tasks, to demonstrate the efficiency of the DPN-GAN. The experimental results demonstrate that DPN-GAN delivers superior performance on both out-of-distribution and noisy data, showcasing its robustness and adaptability. Trained across various datasets, DPN-GAN outperforms state-of-the-art GAN architectures on standard evaluation metrics, and exhibits increased robustness in synthesized audio.
* IEEE Access, vol. 13, pp. 69324-69340, 2025
Via

May 29, 2025
Abstract:A restaurant dinner or a hotel stay may lead to memorable experiences when guests encounter unexpected aspects that also match their interests. For example, an origami-making station in the waiting area of a restaurant may be both surprising and enjoyable for a customer who is passionate about paper crafts. Similarly, an exhibit of 18th century harpsichords would be atypical for a hotel lobby and likely pique the interest of a guest who has a passion for Baroque music. Motivated by this insight, in this paper we introduce the new task of engineering serendipity through recommendations of items with atypical aspects. We describe an LLM-based system pipeline that extracts atypical aspects from item reviews, then estimates and aggregates their user-specific utility in a measure of serendipity potential that is used to rerank a list of items recommended to the user. To facilitate system development and evaluation, we introduce a dataset of Yelp reviews that are manually annotated with atypical aspects and a dataset of artificially generated user profiles, together with crowdsourced annotations of user-aspect utility values. Furthermore, we introduce a custom procedure for dynamic selection of in-context learning examples, which is shown to improve LLM-based judgments of atypicality and utility. Experimental evaluations show that serendipity-based rankings generated by the system are highly correlated with ground truth rankings for which serendipity scores are computed from manual annotations of atypical aspects and their user-dependent utility. Overall, we hope that the new recommendation task and the associated system presented in this paper catalyze further research into recommendation approaches that go beyond accuracy in their pursuit of enhanced user satisfaction. The datasets and the code are made publicly available at https://github.com/ramituncc49er/ATARS .
* 25 pages of content + references and appendix. arXiv admin note: text
overlap with arXiv:2311.02702
Via

Apr 30, 2025
Abstract:Evaluating generative models remains a fundamental challenge, particularly when the goal is to reflect human preferences. In this paper, we use music generation as a case study to investigate the gap between automatic evaluation metrics and human preferences. We conduct comparative experiments across five state-of-the-art music generation approaches, assessing both perceptual quality and distributional similarity to human-composed music. Specifically, we evaluate synthesis music from various perceptual dimensions and examine reference-based metrics such as Mauve Audio Divergence (MAD) and Kernel Audio Distance (KAD). Our findings reveal significant inconsistencies across the different metrics, highlighting the limitation of the current evaluation practice. To support further research, we release a benchmark dataset comprising samples from multiple models. This study provides a broader perspective on the alignment of human preference in generative modeling, advocating for more human-centered evaluation strategies across domains.
Via

May 16, 2025
Abstract:Aesthetics serve as an implicit and important criterion in song generation tasks that reflect human perception beyond objective metrics. However, evaluating the aesthetics of generated songs remains a fundamental challenge, as the appreciation of music is highly subjective. Existing evaluation metrics, such as embedding-based distances, are limited in reflecting the subjective and perceptual aspects that define musical appeal. To address this issue, we introduce SongEval, the first open-source, large-scale benchmark dataset for evaluating the aesthetics of full-length songs. SongEval includes over 2,399 songs in full length, summing up to more than 140 hours, with aesthetic ratings from 16 professional annotators with musical backgrounds. Each song is evaluated across five key dimensions: overall coherence, memorability, naturalness of vocal breathing and phrasing, clarity of song structure, and overall musicality. The dataset covers both English and Chinese songs, spanning nine mainstream genres. Moreover, to assess the effectiveness of song aesthetic evaluation, we conduct experiments using SongEval to predict aesthetic scores and demonstrate better performance than existing objective evaluation metrics in predicting human-perceived musical quality.
Via
