Abstract:Human annotations of mood in music are essential for music generation and recommender systems. However, existing datasets predominantly focus on Western songs with mood terms derived from English, which may limit generalizability across diverse linguistic and cultural backgrounds. To address this, we introduce `GlobalMood', a novel cross-cultural benchmark dataset comprising 1,180 songs sampled from 59 countries, with large-scale annotations collected from 2,519 individuals across five culturally and linguistically distinct locations: U.S., France, Mexico, S. Korea, and Egypt. Rather than imposing predefined mood categories, we implement a bottom-up, participant-driven approach to organically elicit culturally specific music-related mood terms. We then recruit another pool of human participants to collect 988,925 ratings for these culture-specific descriptors. Our analysis confirms the presence of a valence-arousal structure shared across cultures, yet also reveals significant divergences in how certain mood terms, despite being dictionary equivalents, are perceived cross-culturally. State-of-the-art multimodal models benefit substantially from fine-tuning on our cross-culturally balanced dataset, as evidenced by improved alignment with human evaluations - particularly in non-English contexts. More broadly, our findings inform the ongoing debate on the universality versus cultural specificity of emotional descriptors, and our methodology can contribute to other multimodal and cross-lingual research.
Abstract:Deep learning, computational neuroscience, and cognitive science have overlapping goals related to understanding intelligence such that perception and behaviour can be simulated in computational systems. In neuroimaging, machine learning methods have been used to test computational models of sensory information processing. Recently, these model comparison techniques have been used to evaluate deep neural networks (DNNs) as models of sensory information processing. However, the interpretation of such model evaluations is muddied by imprecise statistical conclusions. Here, we make explicit the types of conclusions that can be drawn from these existing model comparison techniques and how these conclusions change when the model in question is a DNN. We discuss how DNNs are amenable to new model comparison techniques that allow for stronger conclusions to be made about the computational mechanisms underlying sensory information processing.