With the outbreak of the Covid-19 virus, the activity of users on Twitter has significantly increased. Some studies have investigated the hot topics of tweets in this period; however, little attention has been paid to presenting and analyzing the spatial and temporal trends of Covid-19 topics. In this study, we use the topic modeling method to extract global topics during the nationwide quarantine periods (March 23 to June 23, 2020) on Covid-19 tweets. We implement the Latent Dirichlet Allocation (LDA) algorithm to extract the topics and then name them with the "reopening", "death cases", "telecommuting", "protests", "anger expression", "masking", "medication", "social distance", "second wave", and "peak of the disease" titles. We additionally analyze temporal trends of the topics for the whole world and four countries. By analyzing the graphs, fascinating results are obtained from altering users' focus on topics over time.
Conventional topic models are ineffective for topic extraction from microblog messages, because the data sparseness exhibited in short messages lacking structure and contexts results in poor message-level word co-occurrence patterns. To address this issue, we organize microblog messages as conversation trees based on their reposting and replying relations, and propose an unsupervised model that jointly learns word distributions to represent: 1) different roles of conversational discourse, 2) various latent topics in reflecting content information. By explicitly distinguishing the probabilities of messages with varying discourse roles in containing topical words, our model is able to discover clusters of discourse words that are indicative of topical content. In an automatic evaluation on large-scale microblog corpora, our joint model yields topics with better coherence scores than competitive topic models from previous studies. Qualitative analysis on model outputs indicates that our model induces meaningful representations for both discourse and topics. We further present an empirical study on microblog summarization based on the outputs of our joint model. The results show that the jointly modeled discourse and topic representations can effectively indicate summary-worthy content in microblog conversations.
A single, stationary topic model such as latent Dirichlet allocation is inappropriate for modeling corpora that span long time periods, as the popularity of topics is likely to change over time. A number of models that incorporate time have been proposed, but in general they either exhibit limited forms of temporal variation, or require computationally expensive inference methods. In this paper we propose non-parametric Topics over Time (npTOT), a model for time-varying topics that allows an unbounded number of topics and exible distribution over the temporal variations in those topics' popularity. We develop a collapsed Gibbs sampler for the proposed model and compare against existing models on synthetic and real document sets.
Millions of online discussions are generated everyday on social media platforms. Topic modelling is an efficient way of better understanding large text datasets at scale. Conventional topic models have had limited success in online discussions, and to overcome their limitations, we use the discussion thread tree structure and propose a "popularity" metric to quantify the number of replies to a comment to extend the frequency of word occurrences, and the "transitivity" concept to characterize topic dependency among nodes in a nested discussion thread. We build a Conversational Structure Aware Topic Model (CSATM) based on popularity and transitivity to infer topics and their assignments to comments. Experiments on real forum datasets are used to demonstrate improved performance for topic extraction with six different measurements of coherence and impressive accuracy for topic assignments.
Word embedding maps words into a low-dimensional continuous embedding space by exploiting the local word collocation patterns in a small context window. On the other hand, topic modeling maps documents onto a low-dimensional topic space, by utilizing the global word collocation patterns in the same document. These two types of patterns are complementary. In this paper, we propose a generative topic embedding model to combine the two types of patterns. In our model, topics are represented by embedding vectors, and are shared across documents. The probability of each word is influenced by both its local context and its topic. A variational inference method yields the topic embeddings as well as the topic mixing proportions for each document. Jointly they represent the document in a low-dimensional continuous space. In two document classification tasks, our method performs better than eight existing methods, with fewer features. In addition, we illustrate with an example that our method can generate coherent topics even based on only one document.
We present Sampled Weighted Min-Hashing (SWMH), a randomized approach to automatically mine topics from large-scale corpora. SWMH generates multiple random partitions of the corpus vocabulary based on term co-occurrence and agglomerates highly overlapping inter-partition cells to produce the mined topics. While other approaches define a topic as a probabilistic distribution over a vocabulary, SWMH topics are ordered subsets of such vocabulary. Interestingly, the topics mined by SWMH underlie themes from the corpus at different levels of granularity. We extensively evaluate the meaningfulness of the mined topics both qualitatively and quantitatively on the NIPS (1.7 K documents), 20 Newsgroups (20 K), Reuters (800 K) and Wikipedia (4 M) corpora. Additionally, we compare the quality of SWMH with Online LDA topics for document representation in classification.
Weakly-supervised table question-answering(TableQA) models have achieved state-of-art performance by using pre-trained BERT transformer to jointly encoding a question and a table to produce structured query for the question. However, in practical settings TableQA systems are deployed over table corpora having topic and word distributions quite distinct from BERT's pretraining corpus. In this work we simulate the practical topic shift scenario by designing novel challenge benchmarks WikiSQL-TS and WikiTQ-TS, consisting of train-dev-test splits in five distinct topic groups, based on the popular WikiSQL and WikiTableQuestions datasets. We empirically show that, despite pre-training on large open-domain text, performance of models degrades significantly when they are evaluated on unseen topics. In response, we propose T3QA (Topic Transferable Table Question Answering) a pragmatic adaptation framework for TableQA comprising of: (1) topic-specific vocabulary injection into BERT, (2) a novel text-to-text transformer generator (such as T5, GPT2) based natural language question generation pipeline focused on generating topic specific training data, and (3) a logical form reranker. We show that T3QA provides a reasonably good baseline for our topic shift benchmarks. We believe our topic split benchmarks will lead to robust TableQA solutions that are better suited for practical deployment.
Visual Storytelling~(VIST) is a task to tell a narrative story about a certain topic according to the given photo stream. The existing studies focus on designing complex models, which rely on a huge amount of human-annotated data. However, the annotation of VIST is extremely costly and many topics cannot be covered in the training dataset due to the long-tail topic distribution. In this paper, we focus on enhancing the generalization ability of the VIST model by considering the few-shot setting. Inspired by the way humans tell a story, we propose a topic adaptive storyteller to model the ability of inter-topic generalization. In practice, we apply the gradient-based meta-learning algorithm on multi-modal seq2seq models to endow the model the ability to adapt quickly from topic to topic. Besides, We further propose a prototype encoding structure to model the ability of intra-topic derivation. Specifically, we encode and restore the few training story text to serve as a reference to guide the generation at inference time. Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model on BLEU and METEOR metric. The further case study shows that the stories generated after few-shot adaptation are more relative and expressive.
Recent research in opinion mining proposed word embedding-based topic modeling methods that provide superior coherence compared to traditional topic modeling. In this paper, we demonstrate how these methods can be used to display correlated topic models on social media texts using SocialVisTUM, our proposed interactive visualization toolkit. It displays a graph with topics as nodes and their correlations as edges. Further details are displayed interactively to support the exploration of large text collections, e.g., representative words and sentences of topics, topic and sentiment distributions, hierarchical topic clustering, and customizable, predefined topic labels. The toolkit optimizes automatically on custom data for optimal coherence. We show a working instance of the toolkit on data crawled from English social media discussions about organic food consumption. The visualization confirms findings of a qualitative consumer research study. SocialVisTUM and its training procedures are accessible online.
Discovering latent topics from text corpora has been studied for decades. Many existing topic models adopt a fully unsupervised setting, and their discovered topics may not cater to users' particular interests due to their inability of leveraging user guidance. Although there exist seed-guided topic discovery approaches that leverage user-provided seeds to discover topic-representative terms, they are less concerned with two factors: (1) the existence of out-of-vocabulary seeds and (2) the power of pre-trained language models (PLMs). In this paper, we generalize the task of seed-guided topic discovery to allow out-of-vocabulary seeds. We propose a novel framework, named SeeTopic, wherein the general knowledge of PLMs and the local semantics learned from the input corpus can mutually benefit each other. Experiments on three real datasets from different domains demonstrate the effectiveness of SeeTopic in terms of topic coherence, accuracy, and diversity.