Abstract:The widespread use of Large Multimodal Models (LMMs) has raised concerns about model toxicity. However, current research mainly focuses on explicit toxicity, with less attention to some more implicit toxicity regarding prejudice and discrimination. To address this limitation, we introduce a subtler type of toxicity named dual-implicit toxicity and a novel toxicity benchmark termed MDIT-Bench: Multimodal Dual-Implicit Toxicity Benchmark. Specifically, we first create the MDIT-Dataset with dual-implicit toxicity using the proposed Multi-stage Human-in-loop In-context Generation method. Based on this dataset, we construct the MDIT-Bench, a benchmark for evaluating the sensitivity of models to dual-implicit toxicity, with 317,638 questions covering 12 categories, 23 subcategories, and 780 topics. MDIT-Bench includes three difficulty levels, and we propose a metric to measure the toxicity gap exhibited by the model across them. In the experiment, we conducted MDIT-Bench on 13 prominent LMMs, and the results show that these LMMs cannot handle dual-implicit toxicity effectively. The model's performance drops significantly in hard level, revealing that these LMMs still contain a significant amount of hidden but activatable toxicity. Data are available at https://github.com/nuo1nuo/MDIT-Bench.
Abstract:A novel social networks sentiment analysis model is proposed based on Twitter sentiment score (TSS) for real-time prediction of the future stock market price FTSE 100, as compared with conventional econometric models of investor sentiment based on closed-end fund discount (CEFD). The proposed TSS model features a new baseline correlation approach, which not only exhibits a decent prediction accuracy, but also reduces the computation burden and enables a fast decision making without the knowledge of historical data. Polynomial regression, classification modelling and lexicon-based sentiment analysis are performed using R. The obtained TSS predicts the future stock market trend in advance by 15 time samples (30 working hours) with an accuracy of 67.22% using the proposed baseline criterion without referring to historical TSS or market data. Specifically, TSS's prediction performance of an upward market is found far better than that of a downward market. Under the logistic regression and linear discriminant analysis, the accuracy of TSS in predicting the upward trend of the future market achieves 97.87%.