Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Topic": models, code, and papers

ATM:Adversarial-neural Topic Model

Nov 01, 2018
Rui Wang, Deyu Zhou, Yulan He

Topic models are widely used for thematic structure discovery in text. But traditional topic models often require dedicated inference procedures for specific tasks at hand. Also, they are not designed to generate word-level semantic representations. To address these limitations, we propose a topic modeling approach based on Generative Adversarial Nets (GANs), called Adversarial-neural Topic Model (ATM). The proposed ATM models topics with Dirichlet prior and employs a generator network to capture the semantic patterns among latent topics. Meanwhile, the generator could also produce word-level semantic representations. To illustrate the feasibility of porting ATM to tasks other than topic modeling, we apply ATM for open domain event extraction. Our experimental results on the two public corpora show that ATM generates more coherence topics, outperforming a number of competitive baselines. Moreover, ATM is able to extract meaningful events from news articles.


  Access Paper or Ask Questions

A Disentangled Adversarial Neural Topic Model for Separating Opinions from Plots in User Reviews

Oct 22, 2020
Gabriele Pergola, Lin Gui, Yulan He

The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTM). Although these approaches have achieved significant results, surprisingly very little work has been done on how to disentangle the latent topics. Existing topic models when applied to reviews may extract topics associated with writers' subjective opinions mixed with those related to factual descriptions such as plot summaries in movie and book reviews. It is thus desirable to automatically separate opinion topics from plot/neutral ones enabling a better interpretability. In this paper, we propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones. We conduct an extensive experimental assessment introducing a new collection of movie and book reviews paired with their plots, namely MOBO dataset, showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models.

* 12 pages, 4 figures 

  Access Paper or Ask Questions

Topic Aware Neural Response Generation

Sep 19, 2016
Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, Wei-Ying Ma

We consider incorporating topic information into the sequence-to-sequence framework to generate informative and interesting responses for chatbots. To this end, we propose a topic aware sequence-to-sequence (TA-Seq2Seq) model. The model utilizes topics to simulate prior knowledge of human that guides them to form informative and interesting responses in conversation, and leverages the topic information in generation by a joint attention mechanism and a biased generation probability. The joint attention mechanism summarizes the hidden vectors of an input message as context vectors by message attention, synthesizes topic vectors by topic attention from the topic words of the message obtained from a pre-trained LDA model, and let these vectors jointly affect the generation of words in decoding. To increase the possibility of topic words appearing in responses, the model modifies the generation probability of topic words by adding an extra probability item to bias the overall distribution. Empirical study on both automatic evaluation metrics and human annotations shows that TA-Seq2Seq can generate more informative and interesting responses, and significantly outperform the-state-of-the-art response generation models.


  Access Paper or Ask Questions

Dynamic and Static Topic Model for Analyzing Time-Series Document Collections

May 06, 2018
Rem Hida, Naoya Takeishi, Takehisa Yairi, Koichi Hori

For extracting meaningful topics from texts, their structures should be considered properly. In this paper, we aim to analyze structured time-series documents such as a collection of news articles and a series of scientific papers, wherein topics evolve along time depending on multiple topics in the past and are also related to each other at each time. To this end, we propose a dynamic and static topic model, which simultaneously considers the dynamic structures of the temporal topic evolution and the static structures of the topic hierarchy at each time. We show the results of experiments on collections of scientific papers, in which the proposed method outperformed conventional models. Moreover, we show an example of extracted topic structures, which we found helpful for analyzing research activities.

* 6 pages, 2 figures, Accepted as ACL 2018 short paper 

  Access Paper or Ask Questions

Neural Topic Modeling with Continual Lifelong Learning

Jun 19, 2020
Pankaj Gupta, Yatin Chaudhary, Thomas Runkler, Hinrich Schütze

Lifelong learning has recently attracted attention in building machine learning systems that continually accumulate and transfer knowledge to help future learning. Unsupervised topic modeling has been popularly used to discover topics from document collections. However, the application of topic modeling is challenging due to data sparsity, e.g., in a small collection of (short) documents and thus, generate incoherent topics and sub-optimal document representations. To address the problem, we propose a lifelong learning framework for neural topic modeling that can continuously process streams of document collections, accumulate topics and guide future topic modeling tasks by knowledge transfer from several sources to better deal with the sparse data. In the lifelong process, we particularly investigate jointly: (1) sharing generative homologies (latent topics) over lifetime to transfer prior knowledge, and (2) minimizing catastrophic forgetting to retain the past learning via novel selective data augmentation, co-training and topic regularization approaches. Given a stream of document collections, we apply the proposed Lifelong Neural Topic Modeling (LNTM) framework in modeling three sparse document collections as future tasks and demonstrate improved performance quantified by perplexity, topic coherence and information retrieval task.

* ICML2020 

  Access Paper or Ask Questions

SenGen: Sentence Generating Neural Variational Topic Model

Aug 01, 2017
Ramesh Nallapati, Igor Melnyk, Abhishek Kumar, Bowen Zhou

We present a new topic model that generates documents by sampling a topic for one whole sentence at a time, and generating the words in the sentence using an RNN decoder that is conditioned on the topic of the sentence. We argue that this novel formalism will help us not only visualize and model the topical discourse structure in a document better, but also potentially lead to more interpretable topics since we can now illustrate topics by sampling representative sentences instead of bag of words or phrases. We present a variational auto-encoder approach for learning in which we use a factorized variational encoder that independently models the posterior over topical mixture vectors of documents using a feed-forward network, and the posterior over topic assignments to sentences using an RNN. Our preliminary experiments on two different datasets indicate early promise, but also expose many challenges that remain to be addressed.


  Access Paper or Ask Questions

TopicRefine: Joint Topic Prediction and Dialogue Response Generation for Multi-turn End-to-End Dialogue System

Sep 11, 2021
Hongru Wang, Mingyu Cui, Zimo Zhou, Gabriel Pui Cheong Fung, Kam-Fai Wong

A multi-turn dialogue always follows a specific topic thread, and topic shift at the discourse level occurs naturally as the conversation progresses, necessitating the model's ability to capture different topics and generate topic-aware responses. Previous research has either predicted the topic first and then generated the relevant response, or simply applied the attention mechanism to all topics, ignoring the joint distribution of the topic prediction and response generation models and resulting in uncontrollable and unrelated responses. In this paper, we propose a joint framework with a topic refinement mechanism to learn these two tasks simultaneously. Specifically, we design a three-pass iteration mechanism to generate coarse response first, then predict corresponding topics, and finally generate refined response conditioned on predicted topics. Moreover, we utilize GPT2DoubleHeads and BERT for the topic prediction task respectively, aiming to investigate the effects of joint learning and the understanding ability of GPT model. Experimental results demonstrate that our proposed framework achieves new state-of-the-art performance at response generation task and the great potential understanding capability of GPT model.


  Access Paper or Ask Questions

OTTers: One-turn Topic Transitions for Open-Domain Dialogue

May 28, 2021
Karin Sevegnani, David M. Howcroft, Ioannis Konstas, Verena Rieser

Mixed initiative in open-domain dialogue requires a system to pro-actively introduce new topics. The one-turn topic transition task explores how a system connects two topics in a cooperative and coherent manner. The goal of the task is to generate a "bridging" utterance connecting the new topic to the topic of the previous conversation turn. We are especially interested in commonsense explanations of how a new topic relates to what has been mentioned before. We first collect a new dataset of human one-turn topic transitions, which we call OTTers. We then explore different strategies used by humans when asked to complete such a task, and notice that the use of a bridging utterance to connect the two topics is the approach used the most. We finally show how existing state-of-the-art text generation models can be adapted to this task and examine the performance of these baselines on different splits of the OTTers data.

* ACL2021 

  Access Paper or Ask Questions

Crime Topic Modeling

Aug 06, 2018
Da Kuang, P. Jeffrey Brantingham, Andrea L. Bertozzi

The classification of crime into discrete categories entails a massive loss of information. Crimes emerge out of a complex mix of behaviors and situations, yet most of these details cannot be captured by singular crime type labels. This information loss impacts our ability to not only understand the causes of crime, but also how to develop optimal crime prevention strategies. We apply machine learning methods to short narrative text descriptions accompanying crime records with the goal of discovering ecologically more meaningful latent crime classes. We term these latent classes "crime topics" in reference to text-based topic modeling methods that produce them. We use topic distributions to measure clustering among formally recognized crime types. Crime topics replicate broad distinctions between violent and property crime, but also reveal nuances linked to target characteristics, situational conditions and the tools and methods of attack. Formal crime types are not discrete in topic space. Rather, crime types are distributed across a range of crime topics. Similarly, individual crime topics are distributed across a range of formal crime types. Key ecological groups include identity theft, shoplifting, burglary and theft, car crimes and vandalism, criminal threats and confidence crimes, and violent crimes. Though not a replacement for formal legal crime classifications, crime topics provide a unique window into the heterogeneous causal processes underlying crime.

* Kuang, D., Brantingham, P. J., & Bertozzi, A. L. (2017). Crime topic modeling. Crime Science, 6(1), 12 
* 47 pages, 4 tables, 7 figures 

  Access Paper or Ask Questions

Recurrent Coupled Topic Modeling over Sequential Documents

Jun 23, 2021
Jinjin Guo, Longbing Cao, Zhiguo Gong

The abundant sequential documents such as online archival, social media and news feeds are streamingly updated, where each chunk of documents is incorporated with smoothly evolving yet dependent topics. Such digital texts have attracted extensive research on dynamic topic modeling to infer hidden evolving topics and their temporal dependencies. However, most of the existing approaches focus on single-topic-thread evolution and ignore the fact that a current topic may be coupled with multiple relevant prior topics. In addition, these approaches also incur the intractable inference problem when inferring latent parameters, resulting in a high computational cost and performance degradation. In this work, we assume that a current topic evolves from all prior topics with corresponding coupling weights, forming the multi-topic-thread evolution. Our method models the dependencies between evolving topics and thoroughly encodes their complex multi-couplings across time steps. To conquer the intractable inference challenge, a new solution with a set of novel data augmentation techniques is proposed, which successfully discomposes the multi-couplings between evolving topics. A fully conjugate model is thus obtained to guarantee the effectiveness and efficiency of the inference technique. A novel Gibbs sampler with a backward-forward filter algorithm efficiently learns latent timeevolving parameters in a closed-form. In addition, the latent Indian Buffet Process (IBP) compound distribution is exploited to automatically infer the overall topic number and customize the sparse topic proportions for each sequential document without bias. The proposed method is evaluated on both synthetic and real-world datasets against the competitive baselines, demonstrating its superiority over the baselines in terms of the low per-word perplexity, high coherent topics, and better document time prediction.


  Access Paper or Ask Questions

<<
5
6
7
8
9
10
11
12
13
14
15
16
17
>>