Abstract:Conventional bag-of-words approaches for topic modeling, like latent Dirichlet allocation (LDA), struggle with literary text. Literature challenges lexical methods because narrative language focuses on immersive sensory details instead of abstractive description or exposition: writers are advised to "show, don't tell." We propose Retell, a simple, accessible topic modeling approach for literature. Here, we prompt resource-efficient, generative language models (LMs) to tell what passages show, thereby translating narratives' surface forms into higher-level concepts and themes. By running LDA on LMs' retellings of passages, we can obtain more precise and informative topics than by running LDA alone or by directly asking LMs to list topics. To investigate the potential of our method for cultural analytics, we compare our method's outputs to expert-guided annotations in a case study on racial/cultural identity in high school English language arts books.
Abstract:Police body-worn cameras have the potential to improve accountability and transparency in policing. Yet in practice, they result in millions of hours of footage that is never reviewed. We investigate the potential of large pre-trained speech models for facilitating reviews, focusing on ASR and officer speech detection in footage from traffic stops. Our proposed pipeline includes training data alignment and filtering, fine-tuning with resource constraints, and combining officer speech detection with ASR for a fully automated approach. We find that (1) fine-tuning strongly improves ASR performance on officer speech (WER=12-13%), (2) ASR on officer speech is much more accurate than on community member speech (WER=43.55-49.07%), (3) domain-specific tasks like officer speech detection and diarization remain challenging. Our work offers practical applications for reviewing body camera footage and general guidance for adapting pre-trained speech models to noisy multi-speaker domains.