What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
May 21, 2025
Abstract:Pretrained generative models have opened new frontiers in brain decoding by enabling the synthesis of realistic texts and images from non-invasive brain recordings. However, the reliability of such outputs remains questionable--whether they truly reflect semantic activation in the brain, or are merely hallucinated by the powerful generative models. In this paper, we focus on EEG-to-text decoding and address its hallucination issue through the lens of posterior collapse. Acknowledging the underlying mismatch in information capacity between EEG and text, we reframe the decoding task as semantic summarization of core meanings rather than previously verbatim reconstruction of stimulus texts. To this end, we propose the Generative Language Inspection Model (GLIM), which emphasizes learning informative and interpretable EEG representations to improve semantic grounding under heterogeneous and small-scale data conditions. Experiments on the public ZuCo dataset demonstrate that GLIM consistently generates fluent, EEG-grounded sentences without teacher forcing. Moreover, it supports more robust evaluation beyond text similarity, through EEG-text retrieval and zero-shot semantic classification across sentiment categories, relation types, and corpus topics. Together, our architecture and evaluation protocols lay the foundation for reliable and scalable benchmarking in generative brain decoding.
* Code, checkpoint and text samples available at
https://github.com/justin-xzliu/GLIM
Via

May 14, 2025
Abstract:Quantifying the causal influence of input features within neural networks has become a topic of increasing interest. Existing approaches typically assess direct, indirect, and total causal effects. This work treats NNs as structural causal models (SCMs) and extends our focus to include intrinsic causal contributions (ICC). We propose an identifiable generative post-hoc framework for quantifying ICC. We also draw a relationship between ICC and Sobol' indices. Our experiments on synthetic and real-world datasets demonstrate that ICC generates more intuitive and reliable explanations compared to existing global explanation techniques.
Via

May 13, 2025
Abstract:Analyzing how the publication records of scientists and research groups have evolved over the years is crucial for assessing their expertise since it can support the management of academic environments by assisting with career planning and evaluation. We introduce VizCV, a novel web-based end-to-end visual analytics framework that enables the interactive exploration of researchers' scientific trajectories. It incorporates AI-assisted analysis and supports automated reporting of career evolution. Our system aims to model career progression through three key dimensions: a) research topic evolution to detect and visualize shifts in scholarly focus over time, b) publication record and the corresponding impact, c) collaboration dynamics depicting the growth and transformation of a researcher's co-authorship network. AI-driven insights provide automated explanations of career transitions, detecting significant shifts in research direction, impact surges, or collaboration expansions. The system also supports comparative analysis between researchers, allowing users to compare topic trajectories and impact growth. Our interactive, multi-tab and multiview system allows for the exploratory analysis of career milestones under different perspectives, such as the most impactful articles, emerging research themes, or obtaining a detailed analysis of the contribution of the researcher in a subfield. The key contributions include AI/ML techniques for: a) topic analysis, b) dimensionality reduction for visualizing patterns and trends, c) the interactive creation of textual descriptions of facets of data through configurable prompt generation and large language models, that include key indicators, to help understanding the career development of individuals or groups.
* 11 pages, 9 figures. Subtmitted
Via

May 22, 2025
Abstract:Hallucinations -- plausible yet erroneous outputs -- remain a critical barrier to reliable deployment of large language models (LLMs). We present the first systematic study linking hallucination incidence to internal-state drift induced by incremental context injection. Using TruthfulQA, we construct two 16-round "titration" tracks per question: one appends relevant but partially flawed snippets, the other injects deliberately misleading content. Across six open-source LLMs, we track overt hallucination rates with a tri-perspective detector and covert dynamics via cosine, entropy, JS and Spearman drifts of hidden states and attention maps. Results reveal (1) monotonic growth of hallucination frequency and representation drift that plateaus after 5--7 rounds; (2) relevant context drives deeper semantic assimilation, producing high-confidence "self-consistent" hallucinations, whereas irrelevant context induces topic-drift errors anchored by attention re-routing; and (3) convergence of JS-Drift ($\sim0.69$) and Spearman-Drift ($\sim0$) marks an "attention-locking" threshold beyond which hallucinations solidify and become resistant to correction. Correlation analyses expose a seesaw between assimilation capacity and attention diffusion, clarifying size-dependent error modes. These findings supply empirical foundations for intrinsic hallucination prediction and context-aware mitigation mechanisms.
Via

May 19, 2025
Abstract:Preference alignment has become a standard pipeline in finetuning models to follow \emph{generic} human preferences. Majority of work seeks to optimize model to produce responses that would be preferable \emph{on average}, simplifying the diverse and often \emph{contradicting} space of human preferences. While research has increasingly focused on personalized alignment: adapting models to individual user preferences, there is a lack of personalized preference dataset which focus on nuanced individual-level preferences. To address this, we introduce WikiPersona: the first fine-grained personalization using well-documented, famous individuals. Our dataset challenges models to align with these personas through an interpretable process: generating verifiable textual descriptions of a persona's background and preferences in addition to alignment. We systematically evaluate different personalization approaches and find that as few-shot prompting with preferences and fine-tuning fail to simultaneously ensure effectiveness and efficiency, using \textit{inferred personal preferences} as prefixes enables effective personalization, especially in topics where preferences clash while leading to more equitable generalization across unseen personas.
* 9 pages, preprint
Via

May 08, 2025
Abstract:With the widespread application of large language models (LLMs), user privacy protection has become a significant research topic. Existing privacy preference modeling methods often rely on large-scale user data, making effective privacy preference analysis challenging in data-limited environments. This study explores how LLMs can analyze user behavior related to privacy protection in scenarios with limited data and proposes a method that integrates Few-shot Learning and Privacy Computing to model user privacy preferences. The research utilizes anonymized user privacy settings data, survey responses, and simulated data, comparing the performance of traditional modeling approaches with LLM-based methods. Experimental results demonstrate that, even with limited data, LLMs significantly improve the accuracy of privacy preference modeling. Additionally, incorporating Differential Privacy and Federated Learning further reduces the risk of user data exposure. The findings provide new insights into the application of LLMs in privacy protection and offer theoretical support for advancing privacy computing and user behavior analysis.
Via

May 18, 2025
Abstract:Open-domain dialogue systems aim to generate natural and engaging conversations, providing significant practical value in real applications such as social robotics and personal assistants. The advent of large language models (LLMs) has greatly advanced this field by improving context understanding and conversational fluency. However, existing LLM-based dialogue systems often fall short in proactively understanding the user's chatting preferences and guiding conversations toward user-centered topics. This lack of user-oriented proactivity can lead users to feel unappreciated, reducing their satisfaction and willingness to continue the conversation in human-computer interactions. To address this issue, we propose a User-oriented Proactive Chatbot (UPC) to enhance the user-oriented proactivity. Specifically, we first construct a critic to evaluate this proactivity inspired by the LLM-as-a-judge strategy. Given the scarcity of high-quality training data, we then employ the critic to guide dialogues between the chatbot and user agents, generating a corpus with enhanced user-oriented proactivity. To ensure the diversity of the user backgrounds, we introduce the ISCO-800, a diverse user background dataset for constructing user agents. Moreover, considering the communication difficulty varies among users, we propose an iterative curriculum learning method that trains the chatbot from easy-to-communicate users to more challenging ones, thereby gradually enhancing its performance. Experiments demonstrate that our proposed training method is applicable to different LLMs, improving user-oriented proactivity and attractiveness in open-domain dialogues.
* 9 pages, 7 figures
Via

May 17, 2025
Abstract:Large language models (LLMs) have shown remarkable progress in mathematical problem-solving, but evaluation has largely focused on problems that have exact analytical solutions or involve formal proofs, often overlooking approximation-based problems ubiquitous in applied science and engineering. To fill this gap, we build on prior work and present HARDMath2, a dataset of 211 original problems covering the core topics in an introductory graduate applied math class, including boundary-layer analysis, WKB methods, asymptotic solutions of nonlinear partial differential equations, and the asymptotics of oscillatory integrals. This dataset was designed and verified by the students and instructors of a core graduate applied mathematics course at Harvard. We build the dataset through a novel collaborative environment that challenges students to write and refine difficult problems consistent with the class syllabus, peer-validate solutions, test different models, and automatically check LLM-generated solutions against their own answers and numerical ground truths. Evaluation results show that leading frontier models still struggle with many of the problems in the dataset, highlighting a gap in the mathematical reasoning skills of current LLMs. Importantly, students identified strategies to create increasingly difficult problems by interacting with the models and exploiting common failure modes. This back-and-forth with the models not only resulted in a richer and more challenging benchmark but also led to qualitative improvements in the students' understanding of the course material, which is increasingly important as we enter an age where state-of-the-art language models can solve many challenging problems across a wide domain of fields.
Via

May 17, 2025
Abstract:Human preference plays a crucial role in the refinement of large language models (LLMs). However, collecting human preference feedback is costly and most existing datasets neglect the correlation between personalization and preferences. To address this issue, we introduce Fair-PP, a synthetic dataset of personalized preferences targeting social equity, derived from real-world social survey data, which includes 28 social groups, 98 equity topics, and 5 personal preference dimensions. Leveraging GPT-4o-mini, we engage in role-playing based on seven representative persona portrayals guided by existing social survey data, yielding a total of 238,623 preference records. Through Fair-PP, we also contribute (i) An automated framework for generating preference data, along with a more fine-grained dataset of personalized preferences; (ii) analysis of the positioning of the existing mainstream LLMs across five major global regions within the personalized preference space; and (iii) a sample reweighting method for personalized preference alignment, enabling alignment with a target persona while maximizing the divergence from other personas. Empirical experiments show our method outperforms the baselines.
* under review
Via

May 10, 2025
Abstract:Optimal Transport is a foundational mathematical theory that connects optimization, partial differential equations, and probability. It offers a powerful framework for comparing probability distributions and has recently become an important tool in machine learning, especially for designing and evaluating generative models. These course notes cover the fundamental mathematical aspects of OT, including the Monge and Kantorovich formulations, Brenier's theorem, the dual and dynamic formulations, the Bures metric on Gaussian distributions, and gradient flows. It also introduces numerical methods such as linear programming, semi-discrete solvers, and entropic regularization. Applications in machine learning include topics like training neural networks via gradient flows, token dynamics in transformers, and the structure of GANs and diffusion models. These notes focus primarily on mathematical content rather than deep learning techniques.
* arXiv admin note: text overlap with arXiv:1803.00567
Via
