Text classification is the process of categorizing text documents into predefined categories or labels.
Large language models (LLMs) are challenging to deploy for domain-specific tasks due to their massive scale. While distilling a fine-tuned LLM into a smaller student model is a promising alternative, the capacity gap between teacher and student often leads to suboptimal performance. This raises a key question: when and how can a student model match or even surpass its teacher on domain-specific tasks? In this work, we propose a novel theoretical insight: a student can outperform its teacher if its advantage on a Student-Favored Subdomain (SFS) outweighs its deficit on the Teacher-Favored Subdomain (TFS). Guided by this insight, we propose Scheduled Checkpoint Distillation (SCD), which reduces the TFS deficit by emulating the teacher's convergence process during supervised fine-tuning (SFT) on the domain task, and a sample-wise Adaptive Weighting (AW) mechanism to preserve student strengths on SFS. Experiments across diverse domain tasks--including QA, NER, and text classification in multiple languages--show that our method consistently outperforms existing distillation approaches, allowing the student model to match or even exceed the performance of its fine-tuned teacher.
Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
Large-scale vision-language models such as CLIP achieve strong zero-shot recognition but struggle with classes that are rarely seen during pretraining, including newly emerging entities and culturally specific categories. We introduce LiteEmbed, a lightweight framework for few-shot personalization of CLIP that enables new classes to be added without retraining its encoders. LiteEmbed performs subspace-guided optimization of text embeddings within CLIP's vocabulary, leveraging a PCA-based decomposition that disentangles coarse semantic directions from fine-grained variations. Two complementary objectives, coarse alignment and fine separation, jointly preserve global semantic consistency while enhancing discriminability among visually similar classes. Once optimized, the embeddings are plug-and-play, seamlessly substituting CLIP's original text features across classification, retrieval, segmentation, and detection tasks. Extensive experiments demonstrate substantial gains over prior methods, establishing LiteEmbed as an effective approach for adapting CLIP to underrepresented, rare, or unseen classes.
Large Language Models (LLMs) exhibit strong multilingual capabilities, yet remain fundamentally constrained by the severe imbalance in global language resources. While over 7,000 languages are spoken worldwide, only a small subset (fewer than 100) has sufficient digital presence to meaningfully influence modern LLM training. This disparity leads to systematic underperformance, cultural misalignment, and limited accessibility for speakers of low-resource and extreme-low-resource languages. To address this gap, we introduce Bring Your Own Language (BYOL), a unified framework for scalable, language-aware LLM development tailored to each language's digital footprint. BYOL begins with a language resource classification that maps languages into four tiers (Extreme-Low, Low, Mid, High) using curated web-scale corpora, and uses this classification to select the appropriate integration pathway. For low-resource languages, we propose a full-stack data refinement and expansion pipeline that combines corpus cleaning, synthetic text generation, continual pretraining, and supervised finetuning. Applied to Chichewa and Maori, this pipeline yields language-specific LLMs that achieve approximately 12 percent average improvement over strong multilingual baselines across 12 benchmarks, while preserving English and multilingual capabilities via weight-space model merging. For extreme-low-resource languages, we introduce a translation-mediated inclusion pathway, and show on Inuktitut that a tailored machine translation system improves over a commercial baseline by 4 BLEU, enabling high-accuracy LLM access when direct language modeling is infeasible. Finally, we release human-translated versions of the Global MMLU-Lite benchmark in Chichewa, Maori, and Inuktitut, and make our codebase and models publicly available at https://github.com/microsoft/byol .
We consider the problem of distinguishing human-written creative fiction (excerpts from novels) from similar text generated by an LLM. Our results show that, while human observers perform poorly (near chance levels) on this binary classification task, a variety of machine-learning models achieve accuracy in the range 0.93 - 0.98 over a previously unseen test set, even using only short samples and single-token (unigram) features. We therefore employ an inherently interpretable (linear) classifier (with a test accuracy of 0.98), in order to elucidate the underlying reasons for this high accuracy. In our analysis, we identify specific unigram features indicative of LLM-generated text, one of the most important being that the LLM tends to use a larger variety of synonyms, thereby skewing the probability distributions in a manner that is easy to detect for a machine learning classifier, yet very difficult for a human observer. Four additional explanation categories were also identified, namely, temporal drift, Americanisms, foreign language usage, and colloquialisms. As identification of the AI-generated text depends on a constellation of such features, the classification appears robust, and therefore not easy to circumvent by malicious actors intent on misrepresenting AI-generated text as human work.
Vision-Language Pre-training (VLP) models demonstrate strong performance across various downstream tasks by learning from large-scale image-text pairs through contrastive pretraining. The release of extensive English image-text datasets (e.g., COYO-700M and LAION-400M) has enabled widespread adoption of models such as CLIP and SigLIP in tasks including cross-modal retrieval and image captioning. However, the advancement of Chinese vision-language pretraining has substantially lagged behind, due to the scarcity of high-quality Chinese image-text data. To address this gap, we develop a comprehensive pipeline for constructing a high-quality Chinese cross-modal dataset. As a result, we propose DanQing, which contains 100 million image-text pairs collected from Common Crawl. Different from existing datasets, DanQing is curated through a more rigorous selection process, yielding superior data quality. Moreover, DanQing is primarily built from 2024-2025 web data, enabling models to better capture evolving semantic trends and thus offering greater practical utility. We compare DanQing with existing datasets by continual pre-training of the SigLIP2 model. Experimental results show that DanQing consistently achieves superior performance across a range of Chinese downstream tasks, including zero-shot classification, cross-modal retrieval, and LMM-based evaluations. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
Distracted driving is a major cause of traffic collisions, calling for robust and scalable detection methods. Vision-language models (VLMs) enable strong zero-shot image classification, but existing VLM-based distracted driver detectors often underperform in real-world conditions. We identify subject-specific appearance variations (e.g., clothing, age, and gender) as a key bottleneck: VLMs entangle these factors with behavior cues, leading to decisions driven by who the driver is rather than what the driver is doing. To address this, we propose a subject decoupling framework that extracts a driver appearance embedding and removes its influence from the image embedding prior to zero-shot classification, thereby emphasizing distraction-relevant evidence. We further orthogonalize text embeddings via metric projection onto Stiefel manifold to improve separability while staying close to the original semantics. Experiments demonstrate consistent gains over prior baselines, indicating the promise of our approach for practical road-safety applications.
The scarcity of annotated datasets for clinical information extraction in non-English languages hinders the evaluation of large language model (LLM)-based methods developed primarily in English. In this study, we present the first comprehensive bilingual evaluation of LLMs for the clinical Relation Extraction (RE) task in both English and Turkish. To facilitate this evaluation, we introduce the first English-Turkish parallel clinical RE dataset, derived and carefully curated from the 2010 i2b2/VA relation classification corpus. We systematically assess a diverse set of prompting strategies, including multiple in-context learning (ICL) and Chain-of-Thought (CoT) approaches, and compare their performance to fine-tuned baselines such as PURE. Furthermore, we propose Relation-Aware Retrieval (RAR), a novel in-context example selection method based on contrastive learning, that is specifically designed to capture both sentence-level and relation-level semantics. Our results show that prompting-based LLM approaches consistently outperform traditional fine-tuned models. Moreover, evaluations for English performed better than their Turkish counterparts across all evaluated LLMs and prompting techniques. Among ICL methods, RAR achieves the highest performance, with Gemini 1.5 Flash reaching a micro-F1 score of 0.906 in English and 0.888 in Turkish. Performance further improves to 0.918 F1 in English when RAR is combined with a structured reasoning prompt using the DeepSeek-V3 model. These findings highlight the importance of high-quality demonstration retrieval and underscore the potential of advanced retrieval and prompting techniques to bridge resource gaps in clinical natural language processing.
AI-text detectors achieve high accuracy on in-domain benchmarks, but often struggle to generalize across different generation conditions such as unseen prompts, model families, or domains. While prior work has reported these generalization gaps, there are limited insights about the underlying causes. In this work, we present a systematic study aimed at explaining generalization behavior through linguistic analysis. We construct a comprehensive benchmark that spans 6 prompting strategies, 7 large language models (LLMs), and 4 domain datasets, resulting in a diverse set of human- and AI-generated texts. Using this dataset, we fine-tune classification-based detectors on various generation settings and evaluate their cross-prompt, cross-model, and cross-dataset generalization. To explain the performance variance, we compute correlations between generalization accuracies and feature shifts of 80 linguistic features between training and test conditions. Our analysis reveals that generalization performance for specific detectors and evaluation conditions is significantly associated with linguistic features such as tense usage and pronoun frequency.
Tracing connections between historical texts is an important part of intertextual research, enabling scholars to reconstruct the virtual library of a writer and identify the sources influencing their creative process. These intertextual links manifest in diverse forms, ranging from direct verbatim quotations to subtle allusions and paraphrases disguised by morphological variation. Language models offer a promising path forward due to their capability of capturing semantic similarity beyond lexical overlap. However, the development of new methods for this task is held back by the scarcity of standardized benchmarks and easy-to-use datasets. We address this gap by introducing Loci Similes, a benchmark for Latin intertextuality detection comprising of a curated dataset of ~172k text segments containing 545 expert-verified parallels linking Late Antique authors to a corpus of classical authors. Using this data, we establish baselines for retrieval and classification of intertextualities with state-of-the-art LLMs.