Text classification is the process of categorizing text documents into predefined categories or labels.
While visual-language models have profoundly linked features between texts and images, the incorporation of 3D modality data, such as point clouds and 3D Gaussians, further enables pretraining for 3D-related tasks, e.g., cross-modal retrieval, zero-shot classification, and scene recognition. As challenges remain in extracting 3D modal features and bridging the gap between different modalities, we propose TIGaussian, a framework that harnesses 3D Gaussian Splatting (3DGS) characteristics to strengthen cross-modality alignment through multi-branch 3DGS tokenizer and modality-specific 3D feature alignment strategies. Specifically, our multi-branch 3DGS tokenizer decouples the intrinsic properties of 3DGS structures into compact latent representations, enabling more generalizable feature extraction. To further bridge the modality gap, we develop a bidirectional cross-modal alignment strategies: a multi-view feature fusion mechanism that leverages diffusion priors to resolve perspective ambiguity in image-3D alignment, while a text-3D projection module adaptively maps 3D features to text embedding space for better text-3D alignment. Extensive experiments on various datasets demonstrate the state-of-the-art performance of TIGaussian in multiple tasks.
Hierarchical text classification (HTC) depends on taxonomies that organize labels into structured hierarchies. However, many real-world taxonomies introduce ambiguities, such as identical leaf names under similar parent nodes, which prevent language models (LMs) from learning clear decision boundaries. In this paper, we present TaxMorph, a framework that uses large language models (LLMs) to transform entire taxonomies through operations such as renaming, merging, splitting, and reordering. Unlike prior work, our method revises the full hierarchy to better match the semantics encoded by LMs. Experiments across three HTC benchmarks show that LLM-refined taxonomies consistently outperform human-curated ones in various settings up to +2.9pp. in F1. To better understand these improvements, we compare how well LMs can assign leaf nodes to parent nodes and vice versa across human-curated and LLM-refined taxonomies. We find that human-curated taxonomies lead to more easily separable clusters in embedding space. However, the LLM-refined taxonomies align more closely with the model's actual confusion patterns during classification. In other words, even though they are harder to separate, they better reflect the model's inductive biases. These findings suggest that LLM-guided refinement creates taxonomies that are more compatible with how models learn, improving HTC performance.
The medical adoption of NLP tools requires interpretability by end users, yet traditional explainable AI (XAI) methods are misaligned with clinical reasoning and lack clinician input. We introduce CHiRPE (Clinical High-Risk Prediction with Explainability), an NLP pipeline that takes transcribed semi-structured clinical interviews to: (i) predict psychosis risk; and (ii) generate novel SHAP explanation formats co-developed with clinicians. Trained on 944 semi-structured interview transcripts across 24 international clinics of the AMP-SCZ study, the CHiRPE pipeline integrates symptom-domain mapping, LLM summarisation, and BERT classification. CHiRPE achieved over 90% accuracy across three BERT variants and outperformed baseline models. Explanation formats were evaluated by 28 clinical experts who indicated a strong preference for our novel concept-guided explanations, especially hybrid graph-and-text summary formats. CHiRPE demonstrates that clinically-guided model development produces both accurate and interpretable results. Our next step is focused on real-world testing across our 24 international sites.
In this paper, we introduce an Adaptive Graph Signal Processing with Dynamic Semantic Alignment (AGSP DSA) framework to perform robust multimodal data fusion over heterogeneous sources, including text, audio, and images. The requested approach uses a dual-graph construction to learn both intra-modal and inter-modal relations, spectral graph filtering to boost the informative signals, and effective node embedding with Multi-scale Graph Convolutional Networks (GCNs). Semantic aware attention mechanism: each modality may dynamically contribute to the context with respect to contextual relevance. The experimental outcomes on three benchmark datasets, including CMU-MOSEI, AVE, and MM-IMDB, show that AGSP-DSA performs as the state of the art. More precisely, it achieves 95.3% accuracy, 0.936 F1-score, and 0.924 mAP on CMU-MOSEI, improving MM-GNN by 2.6 percent in accuracy. It gets 93.4% accuracy and 0.911 F1-score on AVE and 91.8% accuracy and 0.886 F1-score on MM-IMDB, which demonstrate good generalization and robustness in the missing modality setting. These findings verify the efficiency of AGSP-DSA in promoting multimodal learning in sentiment analysis, event recognition and multimedia classification.
We introduce a constrained optimization framework for training transformers that behave like optimization descent algorithms. Specifically, we enforce layerwise descent constraints on the objective function and replace standard empirical risk minimization (ERM) with a primal-dual training scheme. This approach yields models whose intermediate representations decrease the loss monotonically in expectation across layers. We apply our method to both unrolled transformer architectures and conventional pretrained transformers on tasks of video denoising and text classification. Across these settings, we observe constrained transformers achieve stronger robustness to perturbations and maintain higher out-of-distribution generalization, while preserving in-distribution performance.
Vision-Language Models like CLIP create aligned embedding spaces for text and images, making it possible for anyone to build a visual classifier by simply naming the classes they want to distinguish. However, a model that works well in one domain may fail in another, and non-expert users have no straightforward way to assess whether their chosen VLM will work on their problem. We build on prior work using text-only comparisons to evaluate how well a model works for a given natural language task, and explore approaches that also generate synthetic images relevant to that task to evaluate and refine the prediction of zero-shot accuracy. We show that generated imagery to the baseline text-only scores substantially improves the quality of these predictions. Additionally, it gives a user feedback on the kinds of images that were used to make the assessment. Experiments on standard CLIP benchmark datasets demonstrate that the image-based approach helps users predict, without any labeled examples, whether a VLM will be effective for their application.
Intent detection, a fundamental text classification task, aims to identify and label the semantics of user queries, playing a vital role in numerous business applications. Despite the dominance of deep learning techniques in this field, the internal mechanisms enabling Recurrent Neural Networks (RNNs) to solve intent detection tasks are poorly understood. In this work, we apply dynamical systems theory to analyze how RNN architectures address this problem, using both the balanced SNIPS and the imbalanced ATIS datasets. By interpreting sentences as trajectories in the hidden state space, we first show that on the balanced SNIPS dataset, the network learns an ideal solution: the state space, constrained to a low-dimensional manifold, is partitioned into distinct clusters corresponding to each intent. The application of this framework to the imbalanced ATIS dataset then reveals how this ideal geometric solution is distorted by class imbalance, causing the clusters for low-frequency intents to degrade. Our framework decouples geometric separation from readout alignment, providing a novel, mechanistic explanation for real world performance disparities. These findings provide new insights into RNN dynamics, offering a geometric interpretation of how dataset properties directly shape a network's computational solution.
Introduction: Clinical text classification using natural language processing (NLP) models requires adequate training data to achieve optimal performance. For that, 200-500 documents are typically annotated. The number is constrained by time and costs and lacks justification of the sample size requirements and their relationship to text vocabulary properties. Methods: Using the publicly available MIMIC-III dataset containing hospital discharge notes with ICD-9 diagnoses as labels, we employed pre-trained BERT embeddings followed by Random Forest classifiers to identify 10 randomly selected diagnoses, varying training corpus sizes from 100 to 10,000 documents, and analyzed vocabulary properties by identifying strong and noisy predictive words through Lasso logistic regression on bag-of-words embeddings. Results: Learning curves varied significantly across the 10 classification tasks despite identical preprocessing and algorithms, with 600 documents sufficient to achieve 95% of the performance attainable with 10,000 documents for all tasks. Vocabulary analysis revealed that more strong predictors and fewer noisy predictors were associated with steeper learning curves, where every 100 additional noisy words decreased accuracy by approximately 0.02 while 100 additional strong predictors increased maximum accuracy by approximately 0.04.
The combination of multimodal Vision-Language Models (VLMs) and Large Language Models (LLMs) opens up new possibilities for medical classification. This work offers a rigorous, unified benchmark by using four publicly available datasets covering text and image modalities (binary and multiclass complexity) that contrasts traditional Machine Learning (ML) with contemporary transformer-based techniques. We evaluated three model classes for each task: Classical ML (LR, LightGBM, ResNet-50), Prompt-Based LLMs/VLMs (Gemini 2.5), and Fine-Tuned PEFT Models (LoRA-adapted Gemma3 variants). All experiments used consistent data splits and aligned metrics. According to our results, traditional machine learning (ML) models set a high standard by consistently achieving the best overall performance across most medical categorization tasks. This was especially true for structured text-based datasets, where the classical models performed exceptionally well. In stark contrast, the LoRA-tuned Gemma variants consistently showed the worst performance across all text and image experiments, failing to generalize from the minimal fine-tuning provided. However, the zero-shot LLM/VLM pipelines (Gemini 2.5) had mixed results; they performed poorly on text-based tasks, but demonstrated competitive performance on the multiclass image task, matching the classical ResNet-50 baseline. These results demonstrate that in many medical categorization scenarios, established machine learning models continue to be the most reliable option. The experiment suggests that foundation models are not universally superior and that the effectiveness of Parameter-Efficient Fine-Tuning (PEFT) is highly dependent on the adaptation strategy, as minimal fine-tuning proved detrimental in this study.
Graph Foundation Models (GFMs) have emerged as a frontier in graph learning, which are expected to deliver transferable representations across diverse tasks. However, GFMs remain constrained by in-memory bottlenecks: they attempt to encode knowledge into model parameters, which limits semantic capacity, introduces heavy lossy compression with conflicts, and entangles graph representation with the knowledge in ways that hinder efficient adaptation, undermining scalability and interpretability. In this work,we propose RAG-GFM, a Retrieval-Augmented Generation aided Graph Foundation Model that offloads knowledge from parameters and complements parameterized learning. To externalize graph knowledge, we build a dual-modal unified retrieval module, where a semantic store from prefix-structured text and a structural store from centrality-based motif. To preserve heterogeneous information, we design a dual-view alignment objective that contrasts both modalities to capture both content and relational patterns. To enable efficient downstream adaptation, we perform in-context augmentation to enrich supporting instances with retrieved texts and motifs as contextual evidence. Extensive experiments on five benchmark graph datasets demonstrate that RAG-GFM consistently outperforms 13 state-of-the-art baselines in both cross-domain node and graph classification, achieving superior effectiveness and efficiency.