Abstract:Recent advances in search-augmented large reasoning models (LRMs) enable the retrieval of external knowledge to reduce hallucinations in multistep reasoning. However, their ability to operate on graph-structured data, prevalent in domains such as e-commerce, social networks, and scientific citations, remains underexplored. Unlike plain text corpora, graphs encode rich topological signals that connect related entities and can serve as valuable priors for retrieval, enabling more targeted search and improved reasoning efficiency. Yet, effectively leveraging such structure poses unique challenges, including the difficulty of generating graph-expressive queries and ensuring reliable retrieval that balances structural and semantic relevance. To address this gap, we introduce GraphSearch, the first framework that extends search-augmented reasoning to graph learning, enabling zero-shot graph learning without task-specific fine-tuning. GraphSearch combines a Graph-aware Query Planner, which disentangles search space (e.g., 1-hop, multi-hop, or global neighbors) from semantic queries, with a Graph-aware Retriever, which constructs candidate sets based on topology and ranks them using a hybrid scoring function. We further instantiate two traversal modes: GraphSearch-R, which recursively expands neighborhoods hop by hop, and GraphSearch-F, which flexibly retrieves across local and global neighborhoods without hop constraints. Extensive experiments across diverse benchmarks show that GraphSearch achieves competitive or even superior performance compared to supervised graph learning methods, setting state-of-the-art results in zero-shot node classification and link prediction. These findings position GraphSearch as a flexible and generalizable paradigm for agentic reasoning over graphs.
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in representing and understanding diverse modalities. However, they typically focus on modality alignment in a pairwise manner while overlooking structural relationships across data points. Integrating multimodality with structured graph information (i.e., multimodal graphs, MMGs) is essential for real-world applications such as social networks, healthcare, and recommendation systems. Existing MMG learning methods fall into three paradigms based on how they leverage MLLMs: Encoder, Aligner, and Predictor. MLLM-as-Encoder focuses on enhancing graph neural networks (GNNs) via multimodal feature fusion; MLLM-as-Aligner aligns multimodal attributes in language or hidden space to enable LLM-based graph reasoning; MLLM-as-Predictor treats MLLMs as standalone reasoners with in-context learning or fine-tuning. Despite their advances, the MMG field lacks a unified benchmark to fairly evaluate across these approaches, making it unclear what progress has been made. To bridge this gap, we present Graph-MLLM, a comprehensive benchmark for multimodal graph learning by systematically evaluating these three paradigms across six datasets with different domains. Through extensive experiments, we observe that jointly considering the visual and textual attributes of the nodes benefits graph learning, even when using pre-trained text-to-image alignment models (e.g., CLIP) as encoders. We also find that converting visual attributes into textual descriptions further improves performance compared to directly using visual inputs. Moreover, we observe that fine-tuning MLLMs on specific MMGs can achieve state-of-the-art results in most scenarios, even without explicit graph structure information. We hope that our open-sourced library will facilitate rapid, equitable evaluation and inspire further innovative research in this field.