Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

"Text": models, code, and papers

Towards Implicit Text-Guided 3D Shape Generation

Mar 28, 2022
Zhengzhe Liu, Yi Wang, Xiaojuan Qi, Chi-Wing Fu

In this work, we explore the challenging task of generating 3D shapes from text. Beyond the existing works, we propose a new approach for text-guided 3D shape generation, capable of producing high-fidelity shapes with colors that match the given text description. This work has several technical contributions. First, we decouple the shape and color predictions for learning features in both texts and shapes, and propose the word-level spatial transformer to correlate word features from text with spatial features from shape. Also, we design a cyclic loss to encourage consistency between text and shape, and introduce the shape IMLE to diversify the generated shapes. Further, we extend the framework to enable text-guided shape manipulation. Extensive experiments on the largest existing text-shape benchmark manifest the superiority of this work. The code and the models are available at Text-Guided-Shape-Generation.

* accepted by CVPR2022 

  Access Paper or Ask Questions

Improving Rotated Text Detection with Rotation Region Proposal Networks

Nov 16, 2018
Jing Huang, Viswanath Sivakumar, Mher Mnatsakanyan, Guan Pang

A significant number of images shared on social media platforms such as Facebook and Instagram contain text in various forms. It's increasingly becoming commonplace for bad actors to share misinformation, hate speech or other kinds of harmful content as text overlaid on images on such platforms. A scene-text understanding system should hence be able to handle text in various orientations that the adversary might use. Moreover, such a system can be incorporated into screen readers used to aid the visually impaired. In this work, we extend the scene-text extraction system at Facebook, Rosetta, to efficiently handle text in various orientations. Specifically, we incorporate the Rotation Region Proposal Networks (RRPN) in our text extraction pipeline and offer practical suggestions for building and deploying a model for detecting and recognizing text in arbitrary orientations efficiently. Experimental results show a significant improvement on detecting rotated text.

  Access Paper or Ask Questions

End-to-End Video Text Spotting with Transformer

Mar 20, 2022
Weijia Wu, Debing Zhang, Ying Fu, Chunhua Shen, Hong Zhou, Yuanqiang Cai, Ping Luo

Recent video text spotting methods usually require the three-staged pipeline, i.e., detecting text in individual images, recognizing localized text, tracking text streams with post-processing to generate final results. These methods typically follow the tracking-by-match paradigm and develop sophisticated pipelines. In this paper, rooted in Transformer sequence modeling, we propose a simple, but effective end-to-end video text DEtection, Tracking, and Recognition framework (TransDETR). TransDETR mainly includes two advantages: 1) Different from the explicit match paradigm in the adjacent frame, TransDETR tracks and recognizes each text implicitly by the different query termed text query over long-range temporal sequence (more than 7 frames). 2) TransDETR is the first end-to-end trainable video text spotting framework, which simultaneously addresses the three sub-tasks (e.g., text detection, tracking, recognition). Extensive experiments in four video text datasets (i.e.,ICDAR2013 Video, ICDAR2015 Video, Minetto, and YouTube Video Text) are conducted to demonstrate that TransDETR achieves state-of-the-art performance with up to around 8.0% improvements on video text spotting tasks. The code of TransDETR can be found at

* 10 pages, 5 figures 

  Access Paper or Ask Questions

Keep Calm and Switch On! Preserving Sentiment and Fluency in Semantic Text Exchange

Aug 30, 2019
Steven Y. Feng, Aaron W. Li, Jesse Hoey

In this paper, we present a novel method for measurably adjusting the semantics of text while preserving its sentiment and fluency, a task we call semantic text exchange. This is useful for text data augmentation and the semantic correction of text generated by chatbots and virtual assistants. We introduce a pipeline called SMERTI that combines entity replacement, similarity masking, and text infilling. We measure our pipeline's success by its Semantic Text Exchange Score (STES): the ability to preserve the original text's sentiment and fluency while adjusting semantic content. We propose to use masking (replacement) rate threshold as an adjustable parameter to control the amount of semantic change in the text. Our experiments demonstrate that SMERTI can outperform baseline models on Yelp reviews, Amazon reviews, and news headlines.


  Access Paper or Ask Questions

Text Network Exploration via Heterogeneous Web of Topics

Oct 02, 2016
Junxian He, Ying Huang, Changfeng Liu, Jiaming Shen, Yuting Jia, Xinbing Wang

A text network refers to a data type that each vertex is associated with a text document and the relationship between documents is represented by edges. The proliferation of text networks such as hyperlinked webpages and academic citation networks has led to an increasing demand for quickly developing a general sense of a new text network, namely text network exploration. In this paper, we address the problem of text network exploration through constructing a heterogeneous web of topics, which allows people to investigate a text network associating word level with document level. To achieve this, a probabilistic generative model for text and links is proposed, where three different relationships in the heterogeneous topic web are quantified. We also develop a prototype demo system named TopicAtlas to exhibit such heterogeneous topic web, and demonstrate how this system can facilitate the task of text network exploration. Extensive qualitative analyses are included to verify the effectiveness of this heterogeneous topic web. Besides, we validate our model on real-life text networks, showing that it preserves good performance on objective evaluation metrics.

* 8 pages 

  Access Paper or Ask Questions

Representation Learning for Short Text Clustering

Sep 21, 2021
Hui Yin, Xiangyu Song, Shuiqiao Yang, Guangyan Huang, Jianxin Li

Effective representation learning is critical for short text clustering due to the sparse, high-dimensional and noise attributes of short text corpus. Existing pre-trained models (e.g., Word2vec and BERT) have greatly improved the expressiveness for short text representations with more condensed, low-dimensional and continuous features compared to the traditional Bag-of-Words (BoW) model. However, these models are trained for general purposes and thus are suboptimal for the short text clustering task. In this paper, we propose two methods to exploit the unsupervised autoencoder (AE) framework to further tune the short text representations based on these pre-trained text models for optimal clustering performance. In our first method Structural Text Network Graph Autoencoder (STN-GAE), we exploit the structural text information among the corpus by constructing a text network, and then adopt graph convolutional network as encoder to fuse the structural features with the pre-trained text features for text representation learning. In our second method Soft Cluster Assignment Autoencoder (SCA-AE), we adopt an extra soft cluster assignment constraint on the latent space of autoencoder to encourage the learned text representations to be more clustering-friendly. We tested two methods on seven popular short text datasets, and the experimental results show that when only using the pre-trained model for short text clustering, BERT performs better than BoW and Word2vec. However, as long as we further tune the pre-trained representations, the proposed method like SCA-AE can greatly increase the clustering performance, and the accuracy improvement compared to use BERT alone could reach as much as 14\%.

* To be published in 22nd International Conference on Web Information Systems Engineering (WISE2021) 

  Access Paper or Ask Questions

Optimal alphabet for single text compression

Jan 13, 2022
Armen E. Allahverdyan, Andranik Khachatryan

A text can be viewed via different representations, i.e. as a sequence of letters, n-grams of letters, syllables, words, and phrases. Here we study the optimal noiseless compression of texts using the Huffman code, where the alphabet of encoding coincides with one of those representations. We show that it is necessary to account for the codebook when compressing a single text. Hence, the total compression comprises of the optimally compressed text -- characterized by the entropy of the alphabet elements -- and the codebook which is text-specific and therefore has to be included for noiseless (de)compression. For texts of Project Gutenberg the best compression is provided by syllables, i.e. the minimal meaning-expressing element of the language. If only sufficiently short texts are retained, the optimal alphabet is that of letters or 2-grams of letters depending on the retained length.

* 11 pages, 12 figures, 1 table 

  Access Paper or Ask Questions

Scene Text Detection with Scribble Lines

Dec 10, 2020
Wenqing Zhang, Yang Qiu, Minghui Liao, Rui Zhang, Xiaolin Wei, Xiang Bai

Scene text detection, which is one of the most popular topics in both academia and industry, can achieve remarkable performance with sufficient training data. However, the annotation costs of scene text detection are huge with traditional labeling methods due to the various shapes of texts. Thus, it is practical and insightful to study simpler labeling methods without harming the detection performance. In this paper, we propose to annotate the texts by scribble lines instead of polygons for text detection. It is a general labeling method for texts with various shapes and requires low labeling costs. Furthermore, a weakly-supervised scene text detection framework is proposed to use the scribble lines for text detection. The experiments on several benchmarks show that the proposed method bridges the performance gap between the weakly labeling method and the original polygon-based labeling methods, with even better performance. We will release the weak annotations of the benchmarks in our experiments and hope it will benefit the field of scene text detection to achieve better performance with simpler annotations.

  Access Paper or Ask Questions

Benchmarking Chinese Text Recognition: Datasets, Baselines, and an Empirical Study

Dec 30, 2021
Jingye Chen, Haiyang Yu, Jianqi Ma, Mengnan Guan, Xixi Xu, Xiaocong Wang, Shaobo Qu, Bin Li, Xiangyang Xue

The flourishing blossom of deep learning has witnessed the rapid development of text recognition in recent years. However, the existing text recognition methods are mainly for English texts, whereas ignoring the pivotal role of Chinese texts. As another widely-spoken language, Chinese text recognition in all ways has extensive application markets. Based on our observations, we attribute the scarce attention on Chinese text recognition to the lack of reasonable dataset construction standards, unified evaluation methods, and results of the existing baselines. To fill this gap, we manually collect Chinese text datasets from publicly available competitions, projects, and papers, then divide them into four categories including scene, web, document, and handwriting datasets. Furthermore, we evaluate a series of representative text recognition methods on these datasets with unified evaluation methods to provide experimental results. By analyzing the experimental results, we surprisingly observe that state-of-the-art baselines for recognizing English texts cannot perform well on Chinese scenarios. We consider that there still remain numerous challenges under exploration due to the characteristics of Chinese texts, which are quite different from English texts. The code and datasets are made publicly available at

* Code is available at 

  Access Paper or Ask Questions

TextSLAM: Visual SLAM with Planar Text Features

Nov 26, 2019
Boying Li, Danping Zou, Daniele Sartori, Ling Pei, Wenxian Yu

We propose to integrate text objects in man-made scenes tightly into the visual SLAM pipeline. The key idea of our novel text-based visual SLAM is to treat each detected text as a planar feature which is rich of textures and semantic meanings. The text feature is compactly represented by three parameters and integrated into visual SLAM by adopting the illumination-invariant photometric error. We also describe important details involved in implementing a full pipeline of text-based visual SLAM. To our best knowledge, this is the first visual SLAM method tightly coupled with the text features. We tested our method in both indoor and outdoor environments. The results show that with text features, the visual SLAM system becomes more robust and produces much more accurate 3D text maps that could be useful for navigation and scene understanding in robotic or augmented reality applications.

  Access Paper or Ask Questions