Topic:Text Classification
What is Text Classification? Text classification is the process of categorizing text documents into predefined categories or labels.
Papers and Code
May 27, 2025
Abstract:We introduce FinTagging, the first full-scope, table-aware XBRL benchmark designed to evaluate the structured information extraction and semantic alignment capabilities of large language models (LLMs) in the context of XBRL-based financial reporting. Unlike prior benchmarks that oversimplify XBRL tagging as flat multi-class classification and focus solely on narrative text, FinTagging decomposes the XBRL tagging problem into two subtasks: FinNI for financial entity extraction and FinCL for taxonomy-driven concept alignment. It requires models to jointly extract facts and align them with the full 10k+ US-GAAP taxonomy across both unstructured text and structured tables, enabling realistic, fine-grained evaluation. We assess a diverse set of LLMs under zero-shot settings, systematically analyzing their performance on both subtasks and overall tagging accuracy. Our results reveal that, while LLMs demonstrate strong generalization in information extraction, they struggle with fine-grained concept alignment, particularly in disambiguating closely related taxonomy entries. These findings highlight the limitations of existing LLMs in fully automating XBRL tagging and underscore the need for improved semantic reasoning and schema-aware modeling to meet the demands of accurate financial disclosure. Code is available at our GitHub repository and data is at our Hugging Face repository.
Via

May 20, 2025
Abstract:Hausa Natural Language Processing (NLP) has gained increasing attention in recent years, yet remains understudied as a low-resource language despite having over 120 million first-language (L1) and 80 million second-language (L2) speakers worldwide. While significant advances have been made in high-resource languages, Hausa NLP faces persistent challenges, including limited open-source datasets and inadequate model representation. This paper presents an overview of the current state of Hausa NLP, systematically examining existing resources, research contributions, and gaps across fundamental NLP tasks: text classification, machine translation, named entity recognition, speech recognition, and question answering. We introduce HausaNLP (https://catalog.hausanlp.org), a curated catalog that aggregates datasets, tools, and research works to enhance accessibility and drive further development. Furthermore, we discuss challenges in integrating Hausa into large language models (LLMs), addressing issues of suboptimal tokenization and dialectal variation. Finally, we propose strategic research directions emphasizing dataset expansion, improved language modeling approaches, and strengthened community collaboration to advance Hausa NLP. Our work provides both a foundation for accelerating Hausa NLP progress and valuable insights for broader multilingual NLP research.
Via

May 30, 2025
Abstract:Automated radiology report generation from chest X-ray (CXR) images has the potential to improve clinical efficiency and reduce radiologists' workload. However, most datasets, including the publicly available MIMIC-CXR and CheXpert Plus, consist entirely of free-form reports, which are inherently variable and unstructured. This variability poses challenges for both generation and evaluation: existing models struggle to produce consistent, clinically meaningful reports, and standard evaluation metrics fail to capture the nuances of radiological interpretation. To address this, we introduce Structured Radiology Report Generation (SRRG), a new task that reformulates free-text radiology reports into a standardized format, ensuring clarity, consistency, and structured clinical reporting. We create a novel dataset by restructuring reports using large language models (LLMs) following strict structured reporting desiderata. Additionally, we introduce SRR-BERT, a fine-grained disease classification model trained on 55 labels, enabling more precise and clinically informed evaluation of structured reports. To assess report quality, we propose F1-SRR-BERT, a metric that leverages SRR-BERT's hierarchical disease taxonomy to bridge the gap between free-text variability and structured clinical reporting. We validate our dataset through a reader study conducted by five board-certified radiologists and extensive benchmarking experiments.
* Accepted to ACL Main 2025
Via

May 23, 2025
Abstract:While deep learning has achieved remarkable success across many domains, it has historically underperformed on tabular learning tasks, which remain dominated by gradient boosting decision trees (GBDTs). However, recent advancements are paving the way for Tabular Foundation Models, which can leverage real-world knowledge and generalize across diverse datasets, particularly when the data contains free-text. Although incorporating language model capabilities into tabular tasks has been explored, most existing methods utilize static, target-agnostic textual representations, limiting their effectiveness. We introduce TabSTAR: a Foundation Tabular Model with Semantically Target-Aware Representations. TabSTAR is designed to enable transfer learning on tabular data with textual features, with an architecture free of dataset-specific parameters. It unfreezes a pretrained text encoder and takes as input target tokens, which provide the model with the context needed to learn task-specific embeddings. TabSTAR achieves state-of-the-art performance for both medium- and large-sized datasets across known benchmarks of classification tasks with text features, and its pretraining phase exhibits scaling laws in the number of datasets, offering a pathway for further performance improvements.
Via

Jun 05, 2025
Abstract:Composed Video Retrieval (CoVR) retrieves a target video given a query video and a modification text describing the intended change. Existing CoVR benchmarks emphasize appearance shifts or coarse event changes and therefore do not test the ability to capture subtle, fast-paced temporal differences. We introduce TF-CoVR, the first large-scale benchmark dedicated to temporally fine-grained CoVR. TF-CoVR focuses on gymnastics and diving and provides 180K triplets drawn from FineGym and FineDiving. Previous CoVR benchmarks focusing on temporal aspect, link each query to a single target segment taken from the same video, limiting practical usefulness. In TF-CoVR, we instead construct each <query, modification> pair by prompting an LLM with the label differences between clips drawn from different videos; every pair is thus associated with multiple valid target videos (3.9 on average), reflecting real-world tasks such as sports-highlight generation. To model these temporal dynamics we propose TF-CoVR-Base, a concise two-stage training framework: (i) pre-train a video encoder on fine-grained action classification to obtain temporally discriminative embeddings; (ii) align the composed query with candidate videos using contrastive learning. We conduct the first comprehensive study of image, video, and general multimodal embedding (GME) models on temporally fine-grained composed retrieval in both zero-shot and fine-tuning regimes. On TF-CoVR, TF-CoVR-Base improves zero-shot mAP@50 from 5.92 (LanguageBind) to 7.51, and after fine-tuning raises the state-of-the-art from 19.83 to 25.82.
Via

May 20, 2025
Abstract:Query routing, the task to route user queries to different large language model (LLM) endpoints, can be considered as a text classification problem. However, out-of-distribution queries must be handled properly, as those could be questions about unrelated domains, queries in other languages, or even contain unsafe text. Here, we thus study a \emph{guarded} query routing problem, for which we first introduce the Guarded Query Routing Benchmark (GQR-Bench), which covers three exemplary target domains (law, finance, and healthcare), and seven datasets to test robustness against out-of-distribution queries. We then use GQR-Bench to contrast the effectiveness and efficiency of LLM-based routing mechanisms (GPT-4o-mini, Llama-3.2-3B, and Llama-3.1-8B), standard LLM-based guardrail approaches (LlamaGuard and NVIDIA NeMo Guardrails), continuous bag-of-words classifiers (WideMLP, fastText), and traditional machine learning models (SVM, XGBoost). Our results show that WideMLP, enhanced with out-of-domain detection capabilities, yields the best trade-off between accuracy (88\%) and speed (<4ms). The embedding-based fastText excels at speed (<1ms) with acceptable accuracy (80\%), whereas LLMs yield the highest accuracy (91\%) but are comparatively slow (62ms for local Llama-3.1:8B and 669ms for remote GPT-4o-mini calls). Our findings challenge the automatic reliance on LLMs for (guarded) query routing and provide concrete recommendations for practical applications. GQR-Bench will be released as a Python package -- \texttt{gqr}.
Via

May 23, 2025
Abstract:Ultrasound is a widely-used imaging modality critical to global healthcare, yet its interpretation remains challenging due to its varying image quality on operators, noises, and anatomical structures. Although large vision-language models (LVLMs) have demonstrated impressive multimodal capabilities across natural and medical domains, their performance on ultrasound remains largely unexplored. We introduce U2-BENCH, the first comprehensive benchmark to evaluate LVLMs on ultrasound understanding across classification, detection, regression, and text generation tasks. U2-BENCH aggregates 7,241 cases spanning 15 anatomical regions and defines 8 clinically inspired tasks, such as diagnosis, view recognition, lesion localization, clinical value estimation, and report generation, across 50 ultrasound application scenarios. We evaluate 20 state-of-the-art LVLMs, both open- and closed-source, general-purpose and medical-specific. Our results reveal strong performance on image-level classification, but persistent challenges in spatial reasoning and clinical language generation. U2-BENCH establishes a rigorous and unified testbed to assess and accelerate LVLM research in the uniquely multimodal domain of medical ultrasound imaging.
Via

May 27, 2025
Abstract:In this paper, we present a comprehensive and systematic analysis of vision-language models (VLMs) for disparate meme classification tasks. We introduced a novel approach that generates a VLM-based understanding of meme images and fine-tunes the LLMs on textual understanding of the embedded meme text for improving the performance. Our contributions are threefold: (1) Benchmarking VLMs with diverse prompting strategies purposely to each sub-task; (2) Evaluating LoRA fine-tuning across all VLM components to assess performance gains; and (3) Proposing a novel approach where detailed meme interpretations generated by VLMs are used to train smaller language models (LLMs), significantly improving classification. The strategy of combining VLMs with LLMs improved the baseline performance by 8.34%, 3.52% and 26.24% for sarcasm, offensive and sentiment classification, respectively. Our results reveal the strengths and limitations of VLMs and present a novel strategy for meme understanding.
* 16 pages
Via

May 12, 2025
Abstract:The increasing volume of healthcare textual data requires computationally efficient, yet highly accurate classification approaches able to handle the nuanced and complex nature of medical terminology. This research presents Knowledge Distillation for Healthcare Multi-Label Text Classification (KDH-MLTC), a framework leveraging model compression and Large Language Models (LLMs). The proposed approach addresses conventional healthcare Multi-Label Text Classification (MLTC) challenges by integrating knowledge distillation and sequential fine-tuning, subsequently optimized through Particle Swarm Optimization (PSO) for hyperparameter tuning. KDH-MLTC transfers knowledge from a more complex teacher LLM (i.e., BERT) to a lighter student LLM (i.e., DistilBERT) through sequential training adapted to MLTC that preserves the teacher's learned information while significantly reducing computational requirements. As a result, the classification is enabled to be conducted locally, making it suitable for healthcare textual data characterized by sensitivity and, therefore, ensuring HIPAA compliance. The experiments conducted on three medical literature datasets of different sizes, sampled from the Hallmark of Cancer (HoC) dataset, demonstrate that KDH-MLTC achieves superior performance compared to existing approaches, particularly for the largest dataset, reaching an F1 score of 82.70%. Additionally, statistical validation and an ablation study are carried out, proving the robustness of KDH-MLTC. Furthermore, the PSO-based hyperparameter optimization process allowed the identification of optimal configurations. The proposed approach contributes to healthcare text classification research, balancing efficiency requirements in resource-constrained healthcare settings with satisfactory accuracy demands.
Via

May 20, 2025
Abstract:This paper presents a fascinating find: By training an auto-regressive LLM model on text tokens, the text model inherently develops internally an ability to understand images and audio, thereby developing the ability to see and hear just by reading. Popular audio and visual LLM models fine-tune text LLM models to give text output conditioned on images and audio embeddings. On the other hand, our architecture takes in patches of images, audio waveforms or tokens as input. It gives us the embeddings or category labels typical of a classification pipeline. We show the generality of text weights in aiding audio classification for datasets FSD-50K and GTZAN. Further, we show this working for image classification on CIFAR-10 and Fashion-MNIST, as well on image patches. This pushes the notion of text-LLMs learning powerful internal circuits that can be utilized by activating necessary connections for various applications rather than training models from scratch every single time.
* 6 pages, 3 figures, 4 tables. Under Review WASPAA 2025
Via
