Abstract:Hausa Natural Language Processing (NLP) has gained increasing attention in recent years, yet remains understudied as a low-resource language despite having over 120 million first-language (L1) and 80 million second-language (L2) speakers worldwide. While significant advances have been made in high-resource languages, Hausa NLP faces persistent challenges, including limited open-source datasets and inadequate model representation. This paper presents an overview of the current state of Hausa NLP, systematically examining existing resources, research contributions, and gaps across fundamental NLP tasks: text classification, machine translation, named entity recognition, speech recognition, and question answering. We introduce HausaNLP (https://catalog.hausanlp.org), a curated catalog that aggregates datasets, tools, and research works to enhance accessibility and drive further development. Furthermore, we discuss challenges in integrating Hausa into large language models (LLMs), addressing issues of suboptimal tokenization and dialectal variation. Finally, we propose strategic research directions emphasizing dataset expansion, improved language modeling approaches, and strengthened community collaboration to advance Hausa NLP. Our work provides both a foundation for accelerating Hausa NLP progress and valuable insights for broader multilingual NLP research.
Abstract:Automatic Speech Recognition (ASR) technologies have transformed human-computer interaction; however, low-resource languages in Africa remain significantly underrepresented in both research and practical applications. This study investigates the major challenges hindering the development of ASR systems for these languages, which include data scarcity, linguistic complexity, limited computational resources, acoustic variability, and ethical concerns surrounding bias and privacy. The primary goal is to critically analyze these barriers and identify practical, inclusive strategies to advance ASR technologies within the African context. Recent advances and case studies emphasize promising strategies such as community-driven data collection, self-supervised and multilingual learning, lightweight model architectures, and techniques that prioritize privacy. Evidence from pilot projects involving various African languages showcases the feasibility and impact of customized solutions, which encompass morpheme-based modeling and domain-specific ASR applications in sectors like healthcare and education. The findings highlight the importance of interdisciplinary collaboration and sustained investment to tackle the distinct linguistic and infrastructural challenges faced by the continent. This study offers a progressive roadmap for creating ethical, efficient, and inclusive ASR systems that not only safeguard linguistic diversity but also improve digital accessibility and promote socioeconomic participation for speakers of African languages.
Abstract:The advancement of large language models (LLMs) has allowed them to be proficient in various tasks, including content generation. However, their unregulated usage can lead to malicious activities such as plagiarism and generating and spreading fake news, especially for low-resource languages. Most existing machine-generated text detectors are trained on high-resource languages like English, French, etc. In this study, we developed the first large-scale detector that can distinguish between human- and machine-generated content in Hausa. We scrapped seven Hausa-language media outlets for the human-generated text and the Gemini-2.0 flash model to automatically generate the corresponding Hausa-language articles based on the human-generated article headlines. We fine-tuned four pre-trained Afri-centric models (AfriTeVa, AfriBERTa, AfroXLMR, and AfroXLMR-76L) on the resulting dataset and assessed their performance using accuracy and F1-score metrics. AfroXLMR achieved the highest performance with an accuracy of 99.23% and an F1 score of 99.21%, demonstrating its effectiveness for Hausa text detection. Our dataset is made publicly available to enable further research.