This paper presents HaVQA, the first multimodal dataset for visual question-answering (VQA) tasks in the Hausa language. The dataset was created by manually translating 6,022 English question-answer pairs, which are associated with 1,555 unique images from the Visual Genome dataset. As a result, the dataset provides 12,044 gold standard English-Hausa parallel sentences that were translated in a fashion that guarantees their semantic match with the corresponding visual information. We conducted several baseline experiments on the dataset, including visual question answering, visual question elicitation, text-only and multimodal machine translation.
African languages have far less in-language content available digitally, making it challenging for question answering systems to satisfy the information needs of users. Cross-lingual open-retrieval question answering (XOR QA) systems -- those that retrieve answer content from other languages while serving people in their native language -- offer a means of filling this gap. To this end, we create AfriQA, the first cross-lingual QA dataset with a focus on African languages. AfriQA includes 12,000+ XOR QA examples across 10 African languages. While previous datasets have focused primarily on languages where cross-lingual QA augments coverage from the target language, AfriQA focuses on languages where cross-lingual answer content is the only high-coverage source of answer content. Because of this, we argue that African languages are one of the most important and realistic use cases for XOR QA. Our experiments demonstrate the poor performance of automatic translation and multilingual retrieval methods. Overall, AfriQA proves challenging for state-of-the-art QA models. We hope that the dataset enables the development of more equitable QA technology.
We present the findings of our participation in the SemEval-2023 Task 10: Explainable Detection of Online Sexism (EDOS) task, a shared task on offensive language (sexism) detection on English Gab and Reddit dataset. We investigated the effects of transferring two language models: XLM-T (sentiment classification) and HateBERT (same domain -- Reddit) for multi-level classification into Sexist or not Sexist, and other subsequent sub-classifications of the sexist data. We also use synthetic classification of unlabelled dataset and intermediary class information to maximize the performance of our models. We submitted a system in Task A, and it ranked 49th with F1-score of 0.82. This result showed to be competitive as it only under-performed the best system by 0.052% F1-score.
Social media platforms allow users to freely share their opinions about issues or anything they feel like. However, they also make it easier to spread hate and abusive content. The Fulani ethnic group has been the victim of this unfortunate phenomenon. This paper introduces the HERDPhobia - the first annotated hate speech dataset on Fulani herders in Nigeria - in three languages: English, Nigerian-Pidgin, and Hausa. We present a benchmark experiment using pre-trained languages models to classify the tweets as either hateful or non-hateful. Our experiment shows that the XML-T model provides better performance with 99.83% weighted F1. We released the dataset at https://github.com/hausanlp/HERDPhobia for further research.
Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for the four most widely spoken languages in Nigeria (Hausa, Igbo, Nigerian-Pidgin, and Yor\`ub\'a ) consisting of around 30,000 annotated tweets per language (and 14,000 for Nigerian-Pidgin), including a significant fraction of code-mixed tweets. We propose text collection, filtering, processing and labeling methods that enable us to create datasets for these low-resource languages. We evaluate a rangeof pre-trained models and transfer strategies on the dataset. We find that language-specific models and language-adaptivefine-tuning generally perform best. We release the datasets, trained models, sentiment lexicons, and code to incentivizeresearch on sentiment analysis in under-represented languages.