Abstract:Large Language Models (LLMs) have fundamentally transformed approaches to Natural Language Processing (NLP) tasks across diverse domains. In healthcare, accurate and cost-efficient text classification is crucial, whether for clinical notes analysis, diagnosis coding, or any other task, and LLMs present promising potential. Text classification has always faced multiple challenges, including manual annotation for training, handling imbalanced data, and developing scalable approaches. With healthcare, additional challenges are added, particularly the critical need to preserve patients' data privacy and the complexity of the medical terminology. Numerous studies have been conducted to leverage LLMs for automated healthcare text classification and contrast the results with existing machine learning-based methods where embedding, annotation, and training are traditionally required. Existing systematic reviews about LLMs either do not specialize in text classification or do not focus on the healthcare domain. This research synthesizes and critically evaluates the current evidence found in the literature regarding the use of LLMs for text classification in a healthcare setting. Major databases (e.g., Google Scholar, Scopus, PubMed, Science Direct) and other resources were queried, which focused on the papers published between 2018 and 2024 within the framework of PRISMA guidelines, which resulted in 65 eligible research articles. These were categorized by text classification type (e.g., binary classification, multi-label classification), application (e.g., clinical decision support, public health and opinion analysis), methodology, type of healthcare text, and metrics used for evaluation and validation. This review reveals the existing gaps in the literature and suggests future research lines that can be investigated and explored.
Abstract:The escalating volume of collected healthcare textual data presents a unique challenge for automated Multi-Label Text Classification (MLTC), which is primarily due to the scarcity of annotated texts for training and their nuanced nature. Traditional machine learning models often fail to fully capture the array of expressed topics. However, Large Language Models (LLMs) have demonstrated remarkable effectiveness across numerous Natural Language Processing (NLP) tasks in various domains, which show impressive computational efficiency and suitability for unsupervised learning through prompt engineering. Consequently, these LLMs promise an effective MLTC of medical narratives. However, when dealing with various labels, different prompts can be relevant depending on the topic. To address these challenges, the proposed approach, QUAD-LLM-MLTC, leverages the strengths of four LLMs: GPT-4o, BERT, PEGASUS, and BART. QUAD-LLM-MLTC operates in a sequential pipeline in which BERT extracts key tokens, PEGASUS augments textual data, GPT-4o classifies, and BART provides topics' assignment probabilities, which results in four classifications, all in a 0-shot setting. The outputs are then combined using ensemble learning and processed through a meta-classifier to produce the final MLTC result. The approach is evaluated using three samples of annotated texts, which contrast it with traditional and single-model methods. The results show significant improvements across the majority of the topics in the classification's F1 score and consistency (F1 and Micro-F1 scores of 78.17% and 80.16% with standard deviations of 0.025 and 0.011, respectively). This research advances MLTC using LLMs and provides an efficient and scalable solution to rapidly categorize healthcare-related text data without further training.
Abstract:Patient experience and care quality are crucial for a hospital's sustainability and reputation. The analysis of patient feedback offers valuable insight into patient satisfaction and outcomes. However, the unstructured nature of these comments poses challenges for traditional machine learning methods following a supervised learning paradigm. This is due to the unavailability of labeled data and the nuances these texts encompass. This research explores leveraging Large Language Models (LLMs) in conducting Multi-label Text Classification (MLTC) of inpatient comments shared after a stay in the hospital. GPT-4o-Turbo was leveraged to conduct the classification. However, given the sensitive nature of patients' comments, a security layer is introduced before feeding the data to the LLM through a Protected Health Information (PHI) detection framework, which ensures patients' de-identification. Additionally, using the prompt engineering framework, zero-shot learning, in-context learning, and chain-of-thought prompting were experimented with. Results demonstrate that GPT-4o-Turbo, whether following a zero-shot or few-shot setting, outperforms traditional methods and Pre-trained Language Models (PLMs) and achieves the highest overall performance with an F1-score of 76.12% and a weighted F1-score of 73.61% followed closely by the few-shot learning results. Subsequently, the results' association with other patient experience structured variables (e.g., rating) was conducted. The study enhances MLTC through the application of LLMs, offering healthcare practitioners an efficient method to gain deeper insights into patient feedback and deliver prompt, appropriate responses.
Abstract:The success of graph embeddings or node representation learning in a variety of downstream tasks, such as node classification, link prediction, and recommendation systems, has led to their popularity in recent years. Representation learning algorithms aim to preserve local and global network structure by identifying node neighborhood notions. However, many existing algorithms generate embeddings that fail to properly preserve the network structure, or lead to unstable representations due to random processes (e.g., random walks to generate context) and, thus, cannot generate to multi-graph problems. In this paper, we propose RECS, a novel, stable graph embedding algorithmic framework. RECS learns graph representations using connection subgraphs by employing the analogy of graphs with electrical circuits. It preserves both local and global connectivity patterns, and addresses the issue of high-degree nodes. Further, it exploits the strength of weak ties and meta-data that have been neglected by baselines. The experiments show that RECS outperforms state-of-the-art algorithms by up to 36.85% on multi-label classification problem. Further, in contrast to baselines, RECS, being deterministic, is completely stable.
Abstract:Graph representations have increasingly grown in popularity during the last years. Existing representation learning approaches explicitly encode network structure. Despite their good performance in downstream processes (e.g., node classification, link prediction), there is still room for improvement in different aspects, like efficacy, visualization, and interpretability. In this paper, we propose, t-PINE, a method that addresses these limitations. Contrary to baseline methods, which generally learn explicit graph representations by solely using an adjacency matrix, t-PINE avails a multi-view information graph, the adjacency matrix represents the first view, and a nearest neighbor adjacency, computed over the node features, is the second view, in order to learn explicit and implicit node representations, using the Canonical Polyadic (a.k.a. CP) decomposition. We argue that the implicit and the explicit mapping from a higher-dimensional to a lower-dimensional vector space is the key to learn more useful, highly predictable, and gracefully interpretable representations. Having good interpretable representations provides a good guidance to understand how each view contributes to the representation learning process. In addition, it helps us to exclude unrelated dimensions. Extensive experiments show that t-PINE drastically outperforms baseline methods by up to 158.6% with respect to Micro-F1, in several multi-label classification problems, while it has high visualization and interpretability utility.