Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Recent Trends in 2D Object Detection and Applications in Video Event Recognition

Feb 07, 2022
Prithwish Jana, Partha Pratim Mohanta

Object detection serves as a significant step in improving performance of complex downstream computer vision tasks. It has been extensively studied for many years now and current state-of-the-art 2D object detection techniques proffer superlative results even in complex images. In this chapter, we discuss the geometry-based pioneering works in object detection, followed by the recent breakthroughs that employ deep learning. Some of these use a monolithic architecture that takes a RGB image as input and passes it to a feed-forward ConvNet or vision Transformer. These methods, thereby predict class-probability and bounding-box coordinates, all in a single unified pipeline. Two-stage architectures on the other hand, first generate region proposals and then feed it to a CNN to extract features and predict object category and bounding-box. We also elaborate upon the applications of object detection in video event recognition, to achieve better fine-grained video classification performance. Further, we highlight recent datasets for 2D object detection both in images and videos, and present a comparative performance summary of various state-of-the-art object detection techniques.

* Book chapter: P Jana and PP Mohanta, Recent Trends in 2D Object Detection and Applications in Video Event Recognition, published in Advancement of Deep Learning and its Applications in Object Detection and Recognition, edited by R N Mir et al, 2022, published by River Publishers 

Oriented Object Detection with Transformer

Jun 06, 2021
Teli Ma, Mingyuan Mao, Honghui Zheng, Peng Gao, Xiaodi Wang, Shumin Han, Errui Ding, Baochang Zhang, David Doermann

Object detection with Transformers (DETR) has achieved a competitive performance over traditional detectors, such as Faster R-CNN. However, the potential of DETR remains largely unexplored for the more challenging task of arbitrary-oriented object detection problem. We provide the first attempt and implement Oriented Object DEtection with TRansformer ($\bf O^2DETR$) based on an end-to-end network. The contributions of $\rm O^2DETR$ include: 1) we provide a new insight into oriented object detection, by applying Transformer to directly and efficiently localize objects without a tedious process of rotated anchors as in conventional detectors; 2) we design a simple but highly efficient encoder for Transformer by replacing the attention mechanism with depthwise separable convolution, which can significantly reduce the memory and computational cost of using multi-scale features in the original Transformer; 3) our $\rm O^2DETR$ can be another new benchmark in the field of oriented object detection, which achieves up to 3.85 mAP improvement over Faster R-CNN and RetinaNet. We simply fine-tune the head mounted on $\rm O^2DETR$ in a cascaded architecture and achieve a competitive performance over SOTA in the DOTA dataset.


Detecting Human-Object Interaction via Fabricated Compositional Learning

Mar 25, 2021
Zhi Hou, Baosheng Yu, Yu Qiao, Xiaojiang Peng, Dacheng Tao

Human-Object Interaction (HOI) detection, inferring the relationships between human and objects from images/videos, is a fundamental task for high-level scene understanding. However, HOI detection usually suffers from the open long-tailed nature of interactions with objects, while human has extremely powerful compositional perception ability to cognize rare or unseen HOI samples. Inspired by this, we devise a novel HOI compositional learning framework, termed as Fabricated Compositional Learning (FCL), to address the problem of open long-tailed HOI detection. Specifically, we introduce an object fabricator to generate effective object representations, and then combine verbs and fabricated objects to compose new HOI samples. With the proposed object fabricator, we are able to generate large-scale HOI samples for rare and unseen categories to alleviate the open long-tailed issues in HOI detection. Extensive experiments on the most popular HOI detection dataset, HICO-DET, demonstrate the effectiveness of the proposed method for imbalanced HOI detection and significantly improve the state-of-the-art performance on rare and unseen HOI categories. Code is available at

* Accepted to CVPR2021; update code, figures, appendix(Object Detector Analysis) 

Motion Guided Attention for Video Salient Object Detection

Oct 03, 2019
Haofeng Li, Guanqi Chen, Guanbin Li, Yizhou Yu

Video salient object detection aims at discovering the most visually distinctive objects in a video. How to effectively take object motion into consideration during video salient object detection is a critical issue. Existing state-of-the-art methods either do not explicitly model and harvest motion cues or ignore spatial contexts within optical flow images. In this paper, we develop a multi-task motion guided video salient object detection network, which learns to accomplish two sub-tasks using two sub-networks, one sub-network for salient object detection in still images and the other for motion saliency detection in optical flow images. We further introduce a series of novel motion guided attention modules, which utilize the motion saliency sub-network to attend and enhance the sub-network for still images. These two sub-networks learn to adapt to each other by end-to-end training. Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on a wide range of benchmarks. We hope our simple and effective approach will serve as a solid baseline and help ease future research in video salient object detection. Code and models will be made available.

* 10 pages, 4 figures, ICCV 2019, code: 

Learning Human-Object Interaction Detection using Interaction Points

Mar 31, 2020
Tiancai Wang, Tong Yang, Martin Danelljan, Fahad Shahbaz Khan, Xiangyu Zhang, Jian Sun

Understanding interactions between humans and objects is one of the fundamental problems in visual classification and an essential step towards detailed scene understanding. Human-object interaction (HOI) detection strives to localize both the human and an object as well as the identification of complex interactions between them. Most existing HOI detection approaches are instance-centric where interactions between all possible human-object pairs are predicted based on appearance features and coarse spatial information. We argue that appearance features alone are insufficient to capture complex human-object interactions. In this paper, we therefore propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs. Our network predicts interaction points, which directly localize and classify the inter-action. Paired with the densely predicted interaction vectors, the interactions are associated with human and object detections to obtain final predictions. To the best of our knowledge, we are the first to propose an approach where HOI detection is posed as a keypoint detection and grouping problem. Experiments are performed on two popular benchmarks: V-COCO and HICO-DET. Our approach sets a new state-of-the-art on both datasets. Code is available at

* Accepted to CVPR 2020 

Open-set 3D Object Detection

Dec 02, 2021
Jun Cen, Peng Yun, Junhao Cai, Michael Yu Wang, Ming Liu

3D object detection has been wildly studied in recent years, especially for robot perception systems. However, existing 3D object detection is under a closed-set condition, meaning that the network can only output boxes of trained classes. Unfortunately, this closed-set condition is not robust enough for practical use, as it will identify unknown objects as known by mistake. Therefore, in this paper, we propose an open-set 3D object detector, which aims to (1) identify known objects, like the closed-set detection, and (2) identify unknown objects and give their accurate bounding boxes. Specifically, we divide the open-set 3D object detection problem into two steps: (1) finding out the regions containing the unknown objects with high probability and (2) enclosing the points of these regions with proper bounding boxes. The first step is solved by the finding that unknown objects are often classified as known objects with low confidence, and we show that the Euclidean distance sum based on metric learning is a better confidence score than the naive softmax probability to differentiate unknown objects from known objects. On this basis, unsupervised clustering is used to refine the bounding boxes of unknown objects. The proposed method combining metric learning and unsupervised clustering is called the MLUC network. Our experiments show that our MLUC network achieves state-of-the-art performance and can identify both known and unknown objects as expected.

* Received by 3DV 2021 

Small Object Detection for Near Real-Time Egocentric Perception in a Manual Assembly Scenario

Jun 11, 2021
Hooman Tavakoli, Snehal Walunj, Parsha Pahlevannejad, Christiane Plociennik, Martin Ruskowski

Detecting small objects in video streams of head-worn augmented reality devices in near real-time is a huge challenge: training data is typically scarce, the input video stream can be of limited quality, and small objects are notoriously hard to detect. In industrial scenarios, however, it is often possible to leverage contextual knowledge for the detection of small objects. Furthermore, CAD data of objects are typically available and can be used to generate synthetic training data. We describe a near real-time small object detection pipeline for egocentric perception in a manual assembly scenario: We generate a training data set based on CAD data and realistic backgrounds in Unity. We then train a YOLOv4 model for a two-stage detection process: First, the context is recognized, then the small object of interest is detected. We evaluate our pipeline on the augmented reality device Microsoft Hololens 2.

* Accepted for presentation at [email protected] workshop 

Is Object Detection Necessary for Human-Object Interaction Recognition?

Jul 27, 2021
Ying Jin, Yinpeng Chen, Lijuan Wang, Jianfeng Wang, Pei Yu, Zicheng Liu, Jenq-Neng Hwang

This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which rely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP


Orientation Aware Object Detection with Application to Firearms

Apr 22, 2019
Javed Iqbal, Muhammad Akhtar Munir, Arif Mahmood, Afsheen Rafaqat Ali, Mohsen Ali

Automatic detection of firearms is important for enhancing security and safety of people, however, it is a challenging task owing to the wide variations in shape, size and appearance of firearms. To handle these challenges we propose an Orientation Aware Object Detector (OAOD) which has achieved improved firearm detection and localization performance. The proposed detector has two phases. In the Phase-1 it predicts orientation of the object which is used to rotate the object proposal. Maximum area rectangles are cropped from the rotated object proposals which are again classified and localized in the Phase-2 of the algorithm. The oriented object proposals are mapped back to the original coordinates resulting in oriented bounding boxes which localize the weapons much better than the axis aligned bounding boxes. Being orientation aware, our non-maximum suppression is able to avoid multiple detection of the same object and it can better resolve objects which lie in close proximity to each other. This two phase system leverages OAOD to predict object oriented bounding boxes while being trained only on the axis aligned boxes in the ground-truth. In order to train object detectors for firearm detection, a dataset consisting of around eleven thousand firearm images is collected from the internet and manually annotated. The proposed ITU Firearm (ITUF) dataset contains wide range of guns and rifles. The OAOD algorithm is evaluated on the ITUF dataset and compared with current state of the art object detectors. Our experiments demonstrate the excellent performance of the proposed detector for the task of firearm detection.

* Under review in IEEE Transactions