Abstract:Small, fast, and lightweight drones present significant challenges for traditional RGB cameras due to their limitations in capturing fast-moving objects, especially under challenging lighting conditions. Event cameras offer an ideal solution, providing high temporal definition and dynamic range, yet existing benchmarks often lack fine temporal resolution or drone-specific motion patterns, hindering progress in these areas. This paper introduces the Florence RGB-Event Drone dataset (FRED), a novel multimodal dataset specifically designed for drone detection, tracking, and trajectory forecasting, combining RGB video and event streams. FRED features more than 7 hours of densely annotated drone trajectories, using 5 different drone models and including challenging scenarios such as rain and adverse lighting conditions. We provide detailed evaluation protocols and standard metrics for each task, facilitating reproducible benchmarking. The authors hope FRED will advance research in high-speed drone perception and multimodal spatiotemporal understanding.
Abstract:Monitoring aerial objects is crucial for security, wildlife conservation, and environmental studies. Traditional RGB-based approaches struggle with challenges such as scale variations, motion blur, and high-speed object movements, especially for small flying entities like insects and drones. In this work, we explore the potential of event-based vision for detecting and recognizing flying objects, in particular animals that may not follow short and long-term predictable patters. Event cameras offer high temporal resolution, low latency, and robustness to motion blur, making them well-suited for this task. We introduce EV-Flying, an event-based dataset of flying objects, comprising manually annotated birds, insects and drones with spatio-temporal bounding boxes and track identities. To effectively process the asynchronous event streams, we employ a point-based approach leveraging lightweight architectures inspired by PointNet. Our study investigates the classification of flying objects using point cloud-based event representations. The proposed dataset and methodology pave the way for more efficient and reliable aerial object recognition in real-world scenarios.
Abstract:In recent years, drone detection has quickly become a subject of extreme interest: the potential for fast-moving objects of contained dimensions to be used for malicious intents or even terrorist attacks has posed attention to the necessity for precise and resilient systems for detecting and identifying such elements. While extensive literature and works exist on object detection based on RGB data, it is also critical to recognize the limits of such modality when applied to UAVs detection. Detecting drones indeed poses several challenges such as fast-moving objects and scenes with a high dynamic range or, even worse, scarce illumination levels. Neuromorphic cameras, on the other hand, can retain precise and rich spatio-temporal information in situations that are challenging for RGB cameras. They are resilient to both high-speed moving objects and scarce illumination settings, while prone to suffer a rapid loss of information when the objects in the scene are static. In this context, we present a novel model for integrating both domains together, leveraging multimodal data to take advantage of the best of both worlds. To this end, we also release NeRDD (Neuromorphic-RGB Drone Detection), a novel spatio-temporally synchronized Event-RGB Drone detection dataset of more than 3.5 hours of multimodal annotated recordings.