What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jun 09, 2025
Abstract:Contrastive learning for single object centric images has achieved remarkable progress on unsupervised representation, but suffering inferior performance on the widespread images with multiple objects. In this paper, we propose a simple but effective method, Multiple Object Stitching (MOS), to refine the unsupervised representation for multi-object images. Specifically, we construct the multi-object images by stitching the single object centric ones, where the objects in the synthesized multi-object images are predetermined. Hence, compared to the existing contrastive methods, our method provides additional object correspondences between multi-object images without human annotations. In this manner, our method pays more attention to the representations of each object in multi-object image, thus providing more detailed representations for complicated downstream tasks, such as object detection and semantic segmentation. Experimental results on ImageNet, CIFAR and COCO datasets demonstrate that our proposed method achieves the leading unsupervised representation performance on both single object centric images and multi-object ones. The source code is available at https://github.com/visresearch/MultipleObjectStitching.
Via

Jun 09, 2025
Abstract:SpatialLM is a large language model designed to process 3D point cloud data and generate structured 3D scene understanding outputs. These outputs include architectural elements like walls, doors, windows, and oriented object boxes with their semantic categories. Unlike previous methods which exploit task-specific network designs, our model adheres to the standard multimodal LLM architecture and is fine-tuned directly from open-source LLMs. To train SpatialLM, we collect a large-scale, high-quality synthetic dataset consisting of the point clouds of 12,328 indoor scenes (54,778 rooms) with ground-truth 3D annotations, and conduct a careful study on various modeling and training decisions. On public benchmarks, our model gives state-of-the-art performance in layout estimation and competitive results in 3D object detection. With that, we show a feasible path for enhancing the spatial understanding capabilities of modern LLMs for applications in augmented reality, embodied robotics, and more.
Via

Jun 06, 2025
Abstract:Accurate and reliable object detection is critical for ensuring the safety and efficiency of Connected Autonomous Vehicles (CAVs). Traditional on-board perception systems have limited accuracy due to occlusions and blind spots, while cloud-based solutions introduce significant latency, making them unsuitable for real-time processing demands required for autonomous driving in dynamic environments. To address these challenges, we introduce an innovative framework, Edge-Enabled Collaborative Object Detection (ECOD) for CAVs, that leverages edge computing and multi-CAV collaboration for real-time, multi-perspective object detection. Our ECOD framework integrates two key algorithms: Perceptive Aggregation and Collaborative Estimation (PACE) and Variable Object Tally and Evaluation (VOTE). PACE aggregates detection data from multiple CAVs on an edge server to enhance perception in scenarios where individual CAVs have limited visibility. VOTE utilizes a consensus-based voting mechanism to improve the accuracy of object classification by integrating data from multiple CAVs. Both algorithms are designed at the edge to operate in real-time, ensuring low-latency and reliable decision-making for CAVs. We develop a hardware-based controlled testbed consisting of camera-equipped robotic CAVs and an edge server to evaluate the efficacy of our framework. Our experimental results demonstrate the significant benefits of ECOD in terms of improved object classification accuracy, outperforming traditional single-perspective onboard approaches by up to 75%, while ensuring low-latency, edge-driven real-time processing. This research highlights the potential of edge computing to enhance collaborative perception for latency-sensitive autonomous systems.
* This paper has been accepted to IEEE EDGE 2025. The final version
will be published in IEEE Xplore later this year
Via

Jun 09, 2025
Abstract:With the increasing availability of aerial and satellite imagery, deep learning presents significant potential for transportation asset management, safety analysis, and urban planning. This study introduces CrosswalkNet, a robust and efficient deep learning framework designed to detect various types of pedestrian crosswalks from 15-cm resolution aerial images. CrosswalkNet incorporates a novel detection approach that improves upon traditional object detection strategies by utilizing oriented bounding boxes (OBB), enhancing detection precision by accurately capturing crosswalks regardless of their orientation. Several optimization techniques, including Convolutional Block Attention, a dual-branch Spatial Pyramid Pooling-Fast module, and cosine annealing, are implemented to maximize performance and efficiency. A comprehensive dataset comprising over 23,000 annotated crosswalk instances is utilized to train and validate the proposed framework. The best-performing model achieves an impressive precision of 96.5% and a recall of 93.3% on aerial imagery from Massachusetts, demonstrating its accuracy and effectiveness. CrosswalkNet has also been successfully applied to datasets from New Hampshire, Virginia, and Maine without transfer learning or fine-tuning, showcasing its robustness and strong generalization capability. Additionally, the crosswalk detection results, processed using High-Performance Computing (HPC) platforms and provided in polygon shapefile format, have been shown to accelerate data processing and detection, supporting real-time analysis for safety and mobility applications. This integration offers policymakers, transportation engineers, and urban planners an effective instrument to enhance pedestrian safety and improve urban mobility.
Via

Jun 06, 2025
Abstract:Combining multiple object detection datasets offers a path to improved generalisation but is hindered by inconsistencies in class semantics and bounding box annotations. Some methods to address this assume shared label taxonomies and address only spatial inconsistencies; others require manual relabelling, or produce a unified label space, which may be unsuitable when a fixed target label space is required. We propose Label-Aligned Transfer (LAT), a label transfer framework that systematically projects annotations from diverse source datasets into the label space of a target dataset. LAT begins by training dataset-specific detectors to generate pseudo-labels, which are then combined with ground-truth annotations via a Privileged Proposal Generator (PPG) that replaces the region proposal network in two-stage detectors. To further refine region features, a Semantic Feature Fusion (SFF) module injects class-aware context and features from overlapping proposals using a confidence-weighted attention mechanism. This pipeline preserves dataset-specific annotation granularity while enabling many-to-one label space transfer across heterogeneous datasets, resulting in a semantically and spatially aligned representation suitable for training a downstream detector. LAT thus jointly addresses both class-level misalignments and bounding box inconsistencies without relying on shared label spaces or manual annotations. Across multiple benchmarks, LAT demonstrates consistent improvements in target-domain detection performance, achieving gains of up to +4.8AP over semi-supervised baselines.
Via

Jun 06, 2025
Abstract:Cross-Domain Few-Shot Object Detection (CD-FSOD) aims to detect novel objects with only a handful of labeled samples from previously unseen domains. While data augmentation and generative methods have shown promise in few-shot learning, their effectiveness for CD-FSOD remains unclear due to the need for both visual realism and domain alignment. Existing strategies, such as copy-paste augmentation and text-to-image generation, often fail to preserve the correct object category or produce backgrounds coherent with the target domain, making them non-trivial to apply directly to CD-FSOD. To address these challenges, we propose Domain-RAG, a training-free, retrieval-guided compositional image generation framework tailored for CD-FSOD. Domain-RAG consists of three stages: domain-aware background retrieval, domain-guided background generation, and foreground-background composition. Specifically, the input image is first decomposed into foreground and background regions. We then retrieve semantically and stylistically similar images to guide a generative model in synthesizing a new background, conditioned on both the original and retrieved contexts. Finally, the preserved foreground is composed with the newly generated domain-aligned background to form the generated image. Without requiring any additional supervision or training, Domain-RAG produces high-quality, domain-consistent samples across diverse tasks, including CD-FSOD, remote sensing FSOD, and camouflaged FSOD. Extensive experiments show consistent improvements over strong baselines and establish new state-of-the-art results. Codes will be released upon acceptance.
Via

Jun 09, 2025
Abstract:Visible images offer rich texture details, while infrared images emphasize salient targets. Fusing these complementary modalities enhances scene understanding, particularly for advanced vision tasks under challenging conditions. Recently, deep learning-based fusion methods have gained attention, but current evaluations primarily rely on general-purpose metrics without standardized benchmarks or downstream task performance. Additionally, the lack of well-developed dual-spectrum datasets and fair algorithm comparisons hinders progress. To address these gaps, we construct a high-quality dual-spectrum dataset captured in campus environments, comprising 1,369 well-aligned visible-infrared image pairs across four representative scenarios: daytime, nighttime, smoke occlusion, and underpasses. We also propose a comprehensive and fair evaluation framework that integrates fusion speed, general metrics, and object detection performance using the lang-segment-anything model to ensure fairness in downstream evaluation. Extensive experiments benchmark several state-of-the-art fusion algorithms under this framework. Results demonstrate that fusion models optimized for downstream tasks achieve superior performance in target detection, especially in low-light and occluded scenes. Notably, some algorithms that perform well on general metrics do not translate to strong downstream performance, highlighting limitations of current evaluation practices and validating the necessity of our proposed framework. The main contributions of this work are: (1)a campus-oriented dual-spectrum dataset with diverse and challenging scenes; (2) a task-aware, comprehensive evaluation framework; and (3) thorough comparative analysis of leading fusion methods across multiple datasets, offering insights for future development.
* 11 pages, 13 figures
Via

Jun 17, 2025
Abstract:In this paper, we construct two research objectives: i) explore the learned embedding space of BiomedCLIP, an open-source large vision language model, to analyse meaningful class separations, and ii) quantify the limitations of BiomedCLIP when applied to a highly imbalanced, out-of-distribution multi-label medical dataset. We experiment on IU-xray dataset, which exhibits the aforementioned criteria, and evaluate BiomedCLIP in classifying images (radiographs) in three contexts: zero-shot inference, full finetuning, and linear probing. The results show that the model under zero-shot settings over-predicts all labels, leading to poor precision and inter-class separability. Full fine-tuning improves classification of distinct diseases, while linear probing detects overlapping features. We demonstrate visual understanding of the model using Grad-CAM heatmaps and compare with 15 annotations by a radiologist. We highlight the need for careful adaptations of the models to foster reliability and applicability in a real-world setting. The code for the experiments in this work is available and maintained on GitHub.
Via

Jun 05, 2025
Abstract:Annotated datasets are critical for training neural networks for object detection, yet their manual creation is time- and labour-intensive, subjective to human error, and often limited in diversity. This challenge is particularly pronounced in the domain of robotics, where diverse and dynamic scenarios further complicate the creation of representative datasets. To address this, we propose a novel method for automatically generating annotated synthetic data in Unreal Engine. Our approach leverages photorealistic 3D Gaussian splats for rapid synthetic data generation. We demonstrate that synthetic datasets can achieve performance comparable to that of real-world datasets while significantly reducing the time required to generate and annotate data. Additionally, combining real-world and synthetic data significantly increases object detection performance by leveraging the quality of real-world images with the easier scalability of synthetic data. To our knowledge, this is the first application of synthetic data for training object detection algorithms in the highly dynamic and varied environment of robot soccer. Validation experiments reveal that a detector trained on synthetic images performs on par with one trained on manually annotated real-world images when tested on robot soccer match scenarios. Our method offers a scalable and comprehensive alternative to traditional dataset creation, eliminating the labour-intensive error-prone manual annotation process. By generating datasets in a simulator where all elements are intrinsically known, we ensure accurate annotations while significantly reducing manual effort, which makes it particularly valuable for robotics applications requiring diverse and scalable training data.
Via

Jun 05, 2025
Abstract:3D semantic occupancy prediction aims to reconstruct the 3D geometry and semantics of the surrounding environment. With dense voxel labels, prior works typically formulate it as a dense segmentation task, independently classifying each voxel. However, this paradigm neglects critical instance-centric discriminability, leading to instance-level incompleteness and adjacent ambiguities. To address this, we highlight a free lunch of occupancy labels: the voxel-level class label implicitly provides insight at the instance level, which is overlooked by the community. Motivated by this observation, we first introduce a training-free Voxel-to-Instance (VoxNT) trick: a simple yet effective method that freely converts voxel-level class labels into instance-level offset labels. Building on this, we further propose VoxDet, an instance-centric framework that reformulates the voxel-level occupancy prediction as dense object detection by decoupling it into two sub-tasks: offset regression and semantic prediction. Specifically, based on the lifted 3D volume, VoxDet first uses (a) Spatially-decoupled Voxel Encoder to generate disentangled feature volumes for the two sub-tasks, which learn task-specific spatial deformation in the densely projected tri-perceptive space. Then, we deploy (b) Task-decoupled Dense Predictor to address this task via dense detection. Here, we first regress a 4D offset field to estimate distances (6 directions) between voxels and object borders in the voxel space. The regressed offsets are then used to guide the instance-level aggregation in the classification branch, achieving instance-aware prediction. Experiments show that VoxDet can be deployed on both camera and LiDAR input, jointly achieving state-of-the-art results on both benchmarks. VoxDet is not only highly efficient, but also achieves 63.0 IoU on the SemanticKITTI test set, ranking 1st on the online leaderboard.
Via
