What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jun 06, 2025
Abstract:Manipulation has long been a challenging task for robots, while humans can effortlessly perform complex interactions with objects, such as hanging a cup on the mug rack. A key reason is the lack of a large and uniform dataset for teaching robots manipulation skills. Current robot datasets often record robot action in different action spaces within a simple scene. This hinders the robot to learn a unified and robust action representation for different robots within diverse scenes. Observing how humans understand a manipulation task, we find that understanding how the objects should move in the 3D space is a critical clue for guiding actions. This clue is embodiment-agnostic and suitable for both humans and different robots. Motivated by this, we aim to learn a 3D flow world model from both human and robot manipulation data. This model predicts the future movement of the interacting objects in 3D space, guiding action planning for manipulation. Specifically, we synthesize a large-scale 3D optical flow dataset, named ManiFlow-110k, through a moving object auto-detect pipeline. A video diffusion-based world model then learns manipulation physics from these data, generating 3D optical flow trajectories conditioned on language instructions. With the generated 3D object optical flow, we propose a flow-guided rendering mechanism, which renders the predicted final state and leverages GPT-4o to assess whether the predicted flow aligns with the task description. This equips the robot with a closed-loop planning ability. Finally, we consider the predicted 3D optical flow as constraints for an optimization policy to determine a chunk of robot actions for manipulation. Extensive experiments demonstrate strong generalization across diverse robotic manipulation tasks and reliable cross-embodiment adaptation without hardware-specific training.
Via

Jun 08, 2025
Abstract:Single-image super-resolution refers to the reconstruction of a high-resolution image from a single low-resolution observation. Although recent deep learning-based methods have demonstrated notable success on simulated datasets -- with low-resolution images obtained by degrading and downsampling high-resolution ones -- they frequently fail to generalize to real-world settings, such as document scans, which are affected by complex degradations and semantic variability. In this study, we introduce a task-driven, multi-task learning framework for training a super-resolution network specifically optimized for optical character recognition tasks. We propose to incorporate auxiliary loss functions derived from high-level vision tasks, including text detection using the connectionist text proposal network, text recognition via a convolutional recurrent neural network, keypoints localization using Key.Net, and hue consistency. To balance these diverse objectives, we employ dynamic weight averaging mechanism, which adaptively adjusts the relative importance of each loss term based on its convergence behavior. We validate our approach upon the SRResNet architecture, which is a well-established technique for single-image super-resolution. Experimental evaluations on both simulated and real-world scanned document datasets demonstrate that the proposed approach improves text detection, measured with intersection over union, while preserving overall image fidelity. These findings underscore the value of multi-objective optimization in super-resolution models for bridging the gap between simulated training regimes and practical deployment in real-world scenarios.
Via

Jun 05, 2025
Abstract:Embodied 3D grounding aims to localize target objects described in human instructions from ego-centric viewpoint. Most methods typically follow a two-stage paradigm where a trained 3D detector's optimized backbone parameters are used to initialize a grounding model. In this study, we explore a fundamental question: Does embodied 3D grounding benefit enough from detection? To answer this question, we assess the grounding performance of detection models using predicted boxes filtered by the target category. Surprisingly, these detection models without any instruction-specific training outperform the grounding models explicitly trained with language instructions. This indicates that even category-level embodied 3D grounding may not be well resolved, let alone more fine-grained context-aware grounding. Motivated by this finding, we propose DEGround, which shares DETR queries as object representation for both DEtection and Grounding and enables the grounding to benefit from basic category classification and box detection. Based on this framework, we further introduce a regional activation grounding module that highlights instruction-related regions and a query-wise modulation module that incorporates sentence-level semantic into the query representation, strengthening the context-aware understanding of language instructions. Remarkably, DEGround outperforms state-of-the-art model BIP3D by 7.52\% at overall accuracy on the EmbodiedScan validation set. The source code will be publicly available at https://github.com/zyn213/DEGround.
* 1st place on embodiedscan
Via

Jun 10, 2025
Abstract:Most research efforts in the multimedia forensics domain have focused on detecting forgery audio-visual content and reached sound achievements. However, these works only consider deepfake detection as a classification task and ignore the case where partial segments of the video are tampered with. Temporal forgery localization (TFL) of small fake audio-visual clips embedded in real videos is still challenging and more in line with realistic application scenarios. To resolve this issue, we propose a universal context-aware contrastive learning framework (UniCaCLF) for TFL. Our approach leverages supervised contrastive learning to discover and identify forged instants by means of anomaly detection, allowing for the precise localization of temporal forged segments. To this end, we propose a novel context-aware perception layer that utilizes a heterogeneous activation operation and an adaptive context updater to construct a context-aware contrastive objective, which enhances the discriminability of forged instant features by contrasting them with genuine instant features in terms of their distances to the global context. An efficient context-aware contrastive coding is introduced to further push the limit of instant feature distinguishability between genuine and forged instants in a supervised sample-by-sample manner, suppressing the cross-sample influence to improve temporal forgery localization performance. Extensive experimental results over five public datasets demonstrate that our proposed UniCaCLF significantly outperforms the state-of-the-art competing algorithms.
Via

Jun 04, 2025
Abstract:Object referring aims to detect all objects in an image that match a given natural language description. We argue that a robust object referring model should be grounded, meaning its predictions should be both explainable and faithful to the visual content. Specifically, it should satisfy two key properties: 1) Verifiable, by producing interpretable reasoning that justifies its predictions and clearly links them to visual evidence; and 2) Trustworthy, by learning to abstain when no object in the image satisfies the given expression. However, most methods treat referring as a direct bounding box prediction task, offering limited interpretability and struggling to reject expressions with no matching object. In this work, we propose Rex-Thinker, a model that formulates object referring as an explicit CoT reasoning task. Given a referring expression, we first identify all candidate object instances corresponding to the referred object category. Rex-Thinker then performs step-by-step reasoning over each candidate to assess whether it matches the given expression, before making a final prediction. To support this paradigm, we construct a large-scale CoT-style referring dataset named HumanRef-CoT by prompting GPT-4o on the HumanRef dataset. Each reasoning trace follows a structured planning, action, and summarization format, enabling the model to learn decomposed, interpretable reasoning over object candidates. We then train Rex-Thinker in two stages: a cold-start supervised fine-tuning phase to teach the model how to perform structured reasoning, followed by GRPO-based RL learning to improve accuracy and generalization. Experiments show that our approach outperforms standard baselines in both precision and interpretability on in-domain evaluation, while also demonstrating improved ability to reject hallucinated outputs and strong generalization in out-of-domain settings.
Via

May 30, 2025
Abstract:Object detection has recently seen an interesting trend in terms of the most innovative research work, this task being of particular importance in the field of remote sensing, given the consistency of these images in terms of geographical coverage and the objects present. Furthermore, Deep Learning (DL) models, in particular those based on Transformers, are especially relevant for visual computing tasks in general, and target detection in particular. Thus, the present work proposes an application of Deformable-DETR model, a specific architecture using deformable attention mechanisms, on remote sensing images in two different modes, especially optical and Synthetic Aperture Radar (SAR). To achieve this objective, two datasets are used, one optical, which is Pleiades Aircraft dataset, and the other SAR, in particular SAR Ship Detection Dataset (SSDD). The results of a 10-fold stratified validation showed that the proposed model performed particularly well, obtaining an F1 score of 95.12% for the optical dataset and 94.54% for SSDD, while comparing these results with several models detections, especially those based on CNNs and transformers, as well as those specifically designed to detect different object classes in remote sensing images.
* 1st edition of the Invited Session on Smart Observation And
Preservation for Earth, in conjunction with The 29th International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems (KES
2025), Osaka, Japan
* 10 pages, 5 figures, paper accepted at the 29th International
Conference on Knowledge-Based and Intelligent Information and Engineering
Systems (KES 2025), Osaka, Japan
Via

Jun 10, 2025
Abstract:Adversarial attacks on Natural Language Processing (NLP) models expose vulnerabilities by introducing subtle perturbations to input text, often leading to misclassification while maintaining human readability. Existing methods typically focus on word-level or local text segment alterations, overlooking the broader context, which results in detectable or semantically inconsistent perturbations. We propose a novel adversarial text attack scheme named Dynamic Contextual Perturbation (DCP). DCP dynamically generates context-aware perturbations across sentences, paragraphs, and documents, ensuring semantic fidelity and fluency. Leveraging the capabilities of pre-trained language models, DCP iteratively refines perturbations through an adversarial objective function that balances the dual objectives of inducing model misclassification and preserving the naturalness of the text. This comprehensive approach allows DCP to produce more sophisticated and effective adversarial examples that better mimic natural language patterns. Our experimental results, conducted on various NLP models and datasets, demonstrate the efficacy of DCP in challenging the robustness of state-of-the-art NLP systems. By integrating dynamic contextual analysis, DCP significantly enhances the subtlety and impact of adversarial attacks. This study highlights the critical role of context in adversarial attacks and lays the groundwork for creating more robust NLP systems capable of withstanding sophisticated adversarial strategies.
* Proceedings of the IEEE Calcutta Conference (CALCON), Kolkata,
India, 2024, pp. 1-6
* This is the accepted version of the paper, which was presented at
IEEE CALCON. The conference was organized at Jadavpur University, Kolkata,
from December 14 to 15, 2025. The paper is six pages long, and it consists of
six tables and six figures. This is not the final camera-ready version of the
paper
Via

May 29, 2025
Abstract:Recent advances in object detectors have led to their adoption for industrial uses. However, their deployment in critical applications is hindered by the inherent lack of reliability of neural networks and the complex structure of object detection models. To address these challenges, we turn to Conformal Prediction, a post-hoc procedure which offers statistical guarantees that are valid for any dataset size, without requiring prior knowledge on the model or data distribution. Our contribution is manifold: first, we formally define the problem of Conformal Object Detection (COD) and introduce a novel method, Sequential Conformal Risk Control (SeqCRC), that extends the statistical guarantees of Conformal Risk Control (CRC) to two sequential tasks with two parameters, as required in the COD setting. Then, we propose loss functions and prediction sets suited to applying CRC to different applications and certification requirements. Finally, we present a conformal toolkit, enabling replication and further exploration of our methods. Using this toolkit, we perform extensive experiments, yielding a benchmark that validates the investigated methods and emphasizes trade-offs and other practical consequences.
* 28 pages, 11 figures
Via

May 29, 2025
Abstract:We revisit scene-level 3D object detection as the output of an object-centric framework capable of both localization and mapping using 3D oriented boxes as the underlying geometric primitive. While existing 3D object detection approaches operate globally and implicitly rely on the a priori existence of metric camera poses, our method, Rooms from Motion (RfM) operates on a collection of un-posed images. By replacing the standard 2D keypoint-based matcher of structure-from-motion with an object-centric matcher based on image-derived 3D boxes, we estimate metric camera poses, object tracks, and finally produce a global, semantic 3D object map. When a priori pose is available, we can significantly improve map quality through optimization of global 3D boxes against individual observations. RfM shows strong localization performance and subsequently produces maps of higher quality than leading point-based and multi-view 3D object detection methods on CA-1M and ScanNet++, despite these global methods relying on overparameterization through point clouds or dense volumes. Rooms from Motion achieves a general, object-centric representation which not only extends the work of Cubify Anything to full scenes but also allows for inherently sparse localization and parametric mapping proportional to the number of objects in a scene.
Via

May 29, 2025
Abstract:Despite recent advancements in computer vision research, object detection in aerial images still suffers from several challenges. One primary challenge to be mitigated is the presence of multiple types of variation in aerial images, for example, illumination and viewpoint changes. These variations result in highly diverse image scenes and drastic alterations in object appearance, so that it becomes more complicated to localize objects from the whole image scene and recognize their categories. To address this problem, in this paper, we introduce a novel object detection framework in aerial images, named LANGuage-guided Object detection (LANGO). Upon the proposed language-guided learning, the proposed framework is designed to alleviate the impacts from both scene and instance-level variations. First, we are motivated by the way humans understand the semantics of scenes while perceiving environmental factors in the scenes (e.g., weather). Therefore, we design a visual semantic reasoner that comprehends visual semantics of image scenes by interpreting conditions where the given images were captured. Second, we devise a training objective, named relation learning loss, to deal with instance-level variations, such as viewpoint angle and scale changes. This training objective aims to learn relations in language representations of object categories, with the help of the robust characteristics against such variations. Through extensive experiments, we demonstrate the effectiveness of the proposed method, and our method obtains noticeable detection performance improvements.
Via
