Abstract:Object detection has recently seen an interesting trend in terms of the most innovative research work, this task being of particular importance in the field of remote sensing, given the consistency of these images in terms of geographical coverage and the objects present. Furthermore, Deep Learning (DL) models, in particular those based on Transformers, are especially relevant for visual computing tasks in general, and target detection in particular. Thus, the present work proposes an application of Deformable-DETR model, a specific architecture using deformable attention mechanisms, on remote sensing images in two different modes, especially optical and Synthetic Aperture Radar (SAR). To achieve this objective, two datasets are used, one optical, which is Pleiades Aircraft dataset, and the other SAR, in particular SAR Ship Detection Dataset (SSDD). The results of a 10-fold stratified validation showed that the proposed model performed particularly well, obtaining an F1 score of 95.12% for the optical dataset and 94.54% for SSDD, while comparing these results with several models detections, especially those based on CNNs and transformers, as well as those specifically designed to detect different object classes in remote sensing images.
Abstract:In recent years, Geospatial Artificial Intelligence (GeoAI) has gained traction in the most relevant research works and industrial applications, while also becoming involved in various fields of use. This paper offers a comprehensive review of GeoAI as a synergistic concept applying Artificial Intelligence (AI) methods and models to geospatial data. A preliminary study is carried out, identifying the methodology of the work, the research motivations, the issues and the directions to be tracked, followed by exploring how GeoAI can be used in various interesting fields of application, such as precision agriculture, environmental monitoring, disaster management and urban planning. Next, a statistical and semantic analysis is carried out, followed by a clear and precise presentation of the challenges facing GeoAI. Then, a concrete exploration of the future prospects is provided, based on several informations gathered during the census. To sum up, this paper provides a complete overview of the correlation between AI and the geospatial domain, while mentioning the researches conducted in this context, and emphasizing the close relationship linking GeoAI with other advanced concepts such as geographic information systems (GIS) and large-scale geospatial data, known as big geodata. This will enable researchers and scientific community to assess the state of progress in this promising field, and will help other interested parties to gain a better understanding of the issues involved.