Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Using Neural Networks for Relation Extraction from Biomedical Literature

May 27, 2019
Diana Sousa, Andre Lamurias, Francisco M. Couto

Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.

* Preprint 
  

Plumber: A Modular Framework to Create Information Extraction Pipelines

Jun 03, 2022
Mohamad Yaser Jaradeh, Kuldeep Singh, Markus Stocker, Sören Auer

Information Extraction (IE) tasks are commonly studied topics in various domains of research. Hence, the community continuously produces multiple techniques, solutions, and tools to perform such tasks. However, running those tools and integrating them within existing infrastructure requires time, expertise, and resources. One pertinent task here is triples extraction and linking, where structured triples are extracted from a text and aligned to an existing Knowledge Graph (KG). In this paper, we present PLUMBER, the first framework that allows users to manually and automatically create suitable IE pipelines from a community-created pool of tools to perform triple extraction and alignment on unstructured text. Our approach provides an interactive medium to alter the pipelines and perform IE tasks. A short video to show the working of the framework for different use-cases is available online under: https://www.youtube.com/watch?v=XC9rJNIUv8g

* pre-print for WWW'21 demo of ICWE PLUMBER publication 
  

Dimension Reduction by Mutual Information Discriminant Analysis

Jun 10, 2012
Ali Shadvar

In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI. In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA provides robust performance over different data sets with different characteristics and that MIDA always performs better than, or at least comparable to, the best performing algorithms.

* 13pages, 3 tables, International Journal of Artificial Intelligence & Applications 
  

ASCNet: Adaptive-Scale Convolutional Neural Networks for Multi-Scale Feature Learning

Jul 07, 2019
Mo Zhang, Jie Zhao, Xiang Li, Li Zhang, Quanzheng Li

Extracting multi-scale information is key to semantic segmentation. However, the classic convolutional neural networks (CNNs) encounter difficulties in achieving multi-scale information extraction: expanding convolutional kernel incurs the high computational cost and using maximum pooling sacrifices image information. The recently developed dilated convolution solves these problems, but with the limitation that the dilation rates are fixed and therefore the receptive field cannot fit for all objects with different sizes in the image. We propose an adaptivescale convolutional neural network (ASCNet), which introduces a 3-layer convolution structure in the end-to-end training, to adaptively learn an appropriate dilation rate for each pixel in the image. Such pixel-level dilation rates produce optimal receptive fields so that the information of objects with different sizes can be extracted at the corresponding scale. We compare the segmentation results using the classic CNN, the dilated CNN and the proposed ASCNet on two types of medical images (The Herlev dataset and SCD RBC dataset). The experimental results show that ASCNet achieves the highest accuracy. Moreover, the automatically generated dilation rates are positively correlated to the sizes of the objects, confirming the effectiveness of the proposed method.

  

Dynamic Prefix-Tuning for Generative Template-based Event Extraction

May 12, 2022
Xiao Liu, Heyan Huang, Ge Shi, Bo Wang

We consider event extraction in a generative manner with template-based conditional generation. Although there is a rising trend of casting the task of event extraction as a sequence generation problem with prompts, these generation-based methods have two significant challenges, including using suboptimal prompts and static event type information. In this paper, we propose a generative template-based event extraction method with dynamic prefix (GTEE-DynPref) by integrating context information with type-specific prefixes to learn a context-specific prefix for each context. Experimental results show that our model achieves competitive results with the state-of-the-art classification-based model OneIE on ACE 2005 and achieves the best performances on ERE. Additionally, our model is proven to be portable to new types of events effectively.

* accepted by ACL 2022 
  

Cross-Lingual Relation Extraction with Transformers

Oct 16, 2020
Jian Ni, Taesun Moon, Parul Awasthy, Radu Florian

Relation extraction (RE) is one of the most important tasks in information extraction, as it provides essential information for many NLP applications. In this paper, we propose a cross-lingual RE approach that does not require any human annotation in a target language or any cross-lingual resources. Building upon unsupervised cross-lingual representation learning frameworks, we develop several deep Transformer based RE models with a novel encoding scheme that can effectively encode both entity location and entity type information. Our RE models, when trained with English data, outperform several deep neural network based English RE models. More importantly, our models can be applied to perform zero-shot cross-lingual RE, achieving the state-of-the-art cross-lingual RE performance on two datasets (68-89% of the accuracy of the supervised target-language RE model). The high cross-lingual transfer efficiency without requiring additional training data or cross-lingual resources shows that our RE models are especially useful for low-resource languages.

* 11 pages 
  

Speaker-Oriented Latent Structures for Dialogue-Based Relation Extraction

Sep 11, 2021
Guoshun Nan, Guoqing Luo, Sicong Leng, Yao Xiao, Wei Lu

Dialogue-based relation extraction (DiaRE) aims to detect the structural information from unstructured utterances in dialogues. Existing relation extraction models may be unsatisfactory under such a conversational setting, due to the entangled logic and information sparsity issues in utterances involving multiple speakers. To this end, we introduce SOLS, a novel model which can explicitly induce speaker-oriented latent structures for better DiaRE. Specifically, we learn latent structures to capture the relationships among tokens beyond the utterance boundaries, alleviating the entangled logic issue. During the learning process, our speaker-specific regularization method progressively highlights speaker-related key clues and erases the irrelevant ones, alleviating the information sparsity issue. Experiments on three public datasets demonstrate the effectiveness of our proposed approach.

* Accepted as a long paper in the main conference of EMNLP 2021 
  

Transformer-Based Approach for Joint Handwriting and Named Entity Recognition in Historical documents

Dec 08, 2021
Ahmed Cheikh Rouhoua, Marwa Dhiaf, Yousri Kessentini, Sinda Ben Salem

The extraction of relevant information carried out by named entities in handwriting documents is still a challenging task. Unlike traditional information extraction approaches that usually face text transcription and named entity recognition as separate subsequent tasks, we propose in this paper an end-to-end transformer-based approach to jointly perform these two tasks. The proposed approach operates at the paragraph level, which brings two main benefits. First, it allows the model to avoid unrecoverable early errors due to line segmentation. Second, it allows the model to exploit larger bi-dimensional context information to identify the semantic categories, reaching a higher final prediction accuracy. We also explore different training scenarios to show their effect on the performance and we demonstrate that a two-stage learning strategy can make the model reach a higher final prediction accuracy. As far as we know, this work presents the first approach that adopts the transformer networks for named entity recognition in handwritten documents. We achieve the new state-of-the-art performance in the ICDAR 2017 Information Extraction competition using the Esposalles database, for the complete task, even though the proposed technique does not use any dictionaries, language modeling, or post-processing.

* Pattern Recognition Letters, 2022 
  

Decomposed Temporal Dynamic CNN: Efficient Time-Adaptive Network for Text-Independent Speaker Verification Explained with Speaker Activation Map

Mar 29, 2022
Seong-Hu Kim, Hyeonuk Nam, Yong-Hwa Park

Temporal dynamic models for text-independent speaker verification extract consistent speaker information regardless of phonemes by using temporal dynamic CNN (TDY-CNN) in which kernels adapt to each time bin. However, TDY-CNN shows limitations that the model is too large and does not guarantee the diversity of adaptive kernels. To address these limitations, we propose decomposed temporal dynamic CNN (DTDY-CNN) that makes adaptive kernel by combining static kernel and dynamic residual based on matrix decomposition. The baseline model using DTDY-CNN maintained speaker verification performance while reducing the number of model parameters by 35% compared to the model using TDY-CNN. In addition, detailed behaviors of temporal dynamic models on extraction of speaker information was explained using speaker activation maps (SAM) modified from gradient-weighted class activation mapping (Grad-CAM). In DTDY-CNN, the static kernel activates voiced features of utterances, and the dynamic residual activates unvoiced high-frequency features of phonemes. DTDY-CNN effectively extracts speaker information from not only formant frequencies and harmonics but also detailed unvoiced phonemes' information, thus explaining its outstanding performance on text-independent speaker verification.

* Submitted to InterSpeech 2022 
  

A Study of Association Measures and their Combination for Arabic MWT Extraction

Sep 10, 2014
Abdelkader El Mahdaouy, Saïd EL Alaoui Ouatik, Eric Gaussier

Automatic Multi-Word Term (MWT) extraction is a very important issue to many applications, such as information retrieval, question answering, and text categorization. Although many methods have been used for MWT extraction in English and other European languages, few studies have been applied to Arabic. In this paper, we propose a novel, hybrid method which combines linguistic and statistical approaches for Arabic Multi-Word Term extraction. The main contribution of our method is to consider contextual information and both termhood and unithood for association measures at the statistical filtering step. In addition, our technique takes into account the problem of MWT variation in the linguistic filtering step. The performance of the proposed statistical measure (NLC-value) is evaluated using an Arabic environment corpus by comparing it with some existing competitors. Experimental results show that our NLC-value measure outperforms the other ones in term of precision for both bi-grams and tri-grams.

* This paper have been presented and published in 10th International Conference on Terminology and Artificial Intelligence Proceedings 
  
<<
36
37
38
39
40
41
42
43
44
45
46
47
48
>>