Theory Lab, Central Research Institute, 2012 Labs, Huawei Technology Co. Ltd
Abstract:Sparse-view computed tomography (CT) is a practical solution to reduce radiation dose, but the resulting ill-posed inverse problem poses significant challenges for accurate image reconstruction. Although deep learning and diffusion-based methods have shown promising results, they often lack physical interpretability or suffer from high computational costs due to iterative sampling starting from random noise. Recent advances in generative modeling, particularly Poisson Flow Generative Models (PFGM), enable high-fidelity image synthesis by modeling the full data distribution. In this work, we propose Residual Poisson Flow (ResPF) Generative Models for efficient and accurate sparse-view CT reconstruction. Based on PFGM++, ResPF integrates conditional guidance from sparse measurements and employs a hijacking strategy to significantly reduce sampling cost by skipping redundant initial steps. However, skipping early stages can degrade reconstruction quality and introduce unrealistic structures. To address this, we embed a data-consistency into each iteration, ensuring fidelity to sparse-view measurements. Yet, PFGM sampling relies on a fixed ordinary differential equation (ODE) trajectory induced by electrostatic fields, which can be disrupted by step-wise data consistency, resulting in unstable or degraded reconstructions. Inspired by ResNet, we introduce a residual fusion module to linearly combine generative outputs with data-consistent reconstructions, effectively preserving trajectory continuity. To the best of our knowledge, this is the first application of Poisson flow models to sparse-view CT. Extensive experiments on synthetic and clinical datasets demonstrate that ResPF achieves superior reconstruction quality, faster inference, and stronger robustness compared to state-of-the-art iterative, learning-based, and diffusion models.
Abstract:The human-centered word association test (WAT) serves as a cognitive proxy, revealing sociocultural variations through lexical-semantic patterns. We extend this test into an LLM-adaptive, free-relation task to assess the alignment of large language models (LLMs) with cross-cultural cognition. To mitigate the culture preference, we propose CultureSteer, an innovative approach that integrates a culture-aware steering mechanism to guide semantic representations toward culturally specific spaces. Experiments show that current LLMs exhibit significant bias toward Western cultural (notably in American) schemas at the word association level. In contrast, our model substantially improves cross-cultural alignment, surpassing prompt-based methods in capturing diverse semantic associations. Further validation on culture-sensitive downstream tasks confirms its efficacy in fostering cognitive alignment across cultures. This work contributes a novel methodological paradigm for enhancing cultural awareness in LLMs, advancing the development of more inclusive language technologies.
Abstract:Target detection in high-resolution remote sensing imagery faces challenges due to the low recognition accuracy of small targets and high computational costs. The computational complexity of the Transformer architecture increases quadratically with image resolution, while Convolutional Neural Networks (CNN) architectures are forced to stack deeper convolutional layers to expand their receptive fields, leading to an explosive growth in computational demands. To address these computational constraints, we leverage Mamba's linear complexity for efficiency. However, Mamba's performance declines for small targets, primarily because small targets occupy a limited area in the image and have limited semantic information. Accurate identification of these small targets necessitates not only Mamba's global attention capabilities but also the precise capture of fine local details. To this end, we enhance Mamba by developing the Enhanced Small Target Detection (ESTD) module and the Convolutional Attention Residual Gate (CARG) module. The ESTD module bolsters local attention to capture fine-grained details, while the CARG module, built upon Mamba, emphasizes spatial and channel-wise information, collectively improving the model's ability to capture distinctive representations of small targets. Additionally, to highlight the semantic representation of small targets, we design a Mask Enhanced Pixel-level Fusion (MEPF) module for multispectral fusion, which enhances target features by effectively fusing visible and infrared multimodal information.
Abstract:User simulators are crucial for replicating human interactions with dialogue systems, supporting both collaborative training and automatic evaluation, especially for large language models (LLMs). However, existing simulators often rely solely on text utterances, missing implicit user traits such as personality, speaking style, and goals. In contrast, persona-based methods lack generalizability, as they depend on predefined profiles of famous individuals or archetypes. To address these challenges, we propose User Simulator with implicit Profiles (USP), a framework that infers implicit user profiles from human-machine conversations and uses them to generate more personalized and realistic dialogues. We first develop an LLM-driven extractor with a comprehensive profile schema. Then, we refine the simulation through conditional supervised fine-tuning and reinforcement learning with cycle consistency, optimizing it at both the utterance and conversation levels. Finally, we adopt a diverse profile sampler to capture the distribution of real-world user profiles. Experimental results demonstrate that USP outperforms strong baselines in terms of authenticity and diversity while achieving comparable performance in consistency. Furthermore, dynamic multi-turn evaluations based on USP strongly align with mainstream benchmarks, demonstrating its effectiveness in real-world applications.
Abstract:Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Abstract:Retrieval-Augmented Generation (RAG) has emerged as a key paradigm for enhancing large language models (LLMs) by incorporating external knowledge. However, current RAG methods face two limitations: (1) they only cover limited RAG scenarios. (2) They suffer from limited task diversity due to the lack of a general RAG dataset. To address these limitations, we propose RAG-Instruct, a general method for synthesizing diverse and high-quality RAG instruction data based on any source corpus. Our approach leverages (1) five RAG paradigms, which encompass diverse query-document relationships, and (2) instruction simulation, which enhances instruction diversity and quality by utilizing the strengths of existing instruction datasets. Using this method, we construct a 40K instruction dataset from Wikipedia, comprehensively covering diverse RAG scenarios and tasks. Experiments demonstrate that RAG-Instruct effectively enhances LLMs' RAG capabilities, achieving strong zero-shot performance and significantly outperforming various RAG baselines across a diverse set of tasks. RAG-Instruct is publicly available at https://github.com/FreedomIntelligence/RAG-Instruct.
Abstract:Long-term time series analysis aims to forecast long-term trends by examining changes over past and future periods. The intricacy of time series data poses significant challenges for modeling. Models based on the Transformer architecture, through the application of attention mechanisms to channels and sequences, have demonstrated notable performance advantages. In contrast, methods based on convolutional neural networks or linear models often struggle to effectively handle scenarios with large number of channels. However, our research reveals that the attention mechanism is not the core component responsible for performance enhancement. We have designed an exceedingly simple linear structure AverageLinear. By employing straightforward channel embedding and averaging operations, this model can effectively capture correlations between channels while maintaining a lightweight architecture. Experimentss on real-world datasets shows that AverageLinear matches or even surpasses state-of-the-art Transformer-based structures in performance. This indicates that using purely linear structures can also endow models with robust predictive power.
Abstract:In the healthcare sector, the application of deep learning technologies has revolutionized data analysis and disease forecasting. This is particularly evident in the field of diabetes, where the deep analysis of Electronic Health Records (EHR) has unlocked new opportunities for early detection and effective intervention strategies. Our research presents an innovative model that synergizes the capabilities of Bidirectional Long Short-Term Memory Networks-Conditional Random Field (BiLSTM-CRF) with a fusion of XGBoost and Logistic Regression. This model is designed to enhance the accuracy of diabetes risk prediction by conducting an in-depth analysis of electronic medical records data. The first phase of our approach involves employing BiLSTM-CRF to delve into the temporal characteristics and latent patterns present in EHR data. This method effectively uncovers the progression trends of diabetes, which are often hidden in the complex data structures of medical records. The second phase leverages the combined strength of XGBoost and Logistic Regression to classify these extracted features and evaluate associated risks. This dual approach facilitates a more nuanced and precise prediction of diabetes, outperforming traditional models, particularly in handling multifaceted and nonlinear medical datasets. Our research demonstrates a notable advancement in diabetes prediction over traditional methods, showcasing the effectiveness of our combined BiLSTM-CRF, XGBoost, and Logistic Regression model. This study highlights the value of data-driven strategies in clinical decision-making, equipping healthcare professionals with precise tools for early detection and intervention. By enabling personalized treatment and timely care, our approach signifies progress in incorporating advanced analytics in healthcare, potentially improving outcomes for diabetes and other chronic conditions.
Abstract:This paper introduces $\rho$-NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance field enriched with physics-based attenuation priors. The $\rho$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network that takes a single continuous four-dimensional (4D) coordinate, spatial location $(x, y, z)$ and an initialized attenuation value ($\rho$), and outputs the attenuation coefficient at that position. By querying these 4D coordinates along X-ray paths, the classic forward projection technique is applied to integrate attenuation data across the 3D space. By matching and refining pre-initialized attenuation values derived from traditional reconstruction algorithms like Feldkamp-Davis-Kress algorithm (FDK) or conjugate gradient least squares (CGLS), the enriched schema delivers superior fidelity in both projection synthesis and image recognition.
Abstract:This study introduces a method for efficiently detecting objects within 3D point clouds using convolutional neural networks (CNNs). Our approach adopts a unique feature-centric voting mechanism to construct convolutional layers that capitalize on the typical sparsity observed in input data. We explore the trade-off between accuracy and speed across diverse network architectures and advocate for integrating an $\mathcal{L}_1$ penalty on filter activations to augment sparsity within intermediate layers. This research pioneers the proposal of sparse convolutional layers combined with $\mathcal{L}_1$ regularization to effectively handle large-scale 3D data processing. Our method's efficacy is demonstrated on the MVTec 3D-AD object detection benchmark. The Vote3Deep models, with just three layers, outperform the previous state-of-the-art in both laser-only approaches and combined laser-vision methods. Additionally, they maintain competitive processing speeds. This underscores our approach's capability to substantially enhance detection performance while ensuring computational efficiency suitable for real-time applications.