Abstract:Recent advancements in large language models (LLMs) have unlocked unprecedented possibilities across a range of applications. However, as a community, we believe that the field of Natural Language Processing (NLP) has a growing need to approach deployment with greater intentionality and responsibility. In alignment with the broader vision of AI for Social Good (Toma\v{s}ev et al., 2020), this paper examines the role of NLP in addressing pressing societal challenges. Through a cross-disciplinary analysis of social goals and emerging risks, we highlight promising research directions and outline challenges that must be addressed to ensure responsible and equitable progress in NLP4SG research.
Abstract:As vision-language models (VLMs) become increasingly integrated into daily life, the need for accurate visual culture understanding is becoming critical. Yet, these models frequently fall short in interpreting cultural nuances effectively. Prior work has demonstrated the effectiveness of retrieval-augmented generation (RAG) in enhancing cultural understanding in text-only settings, while its application in multimodal scenarios remains underexplored. To bridge this gap, we introduce RAVENEA (Retrieval-Augmented Visual culturE uNdErstAnding), a new benchmark designed to advance visual culture understanding through retrieval, focusing on two tasks: culture-focused visual question answering (cVQA) and culture-informed image captioning (cIC). RAVENEA extends existing datasets by integrating over 10,000 Wikipedia documents curated and ranked by human annotators. With RAVENEA, we train and evaluate seven multimodal retrievers for each image query, and measure the downstream impact of retrieval-augmented inputs across fourteen state-of-the-art VLMs. Our results show that lightweight VLMs, when augmented with culture-aware retrieval, outperform their non-augmented counterparts (by at least 3.2% absolute on cVQA and 6.2% absolute on cIC). This highlights the value of retrieval-augmented methods and culturally inclusive benchmarks for multimodal understanding.
Abstract:The rapid spread of online disinformation presents a global challenge, and machine learning has been widely explored as a potential solution. However, multilingual settings and low-resource languages are often neglected in this field. To address this gap, we conducted a shared task on multilingual claim retrieval at SemEval 2025, aimed at identifying fact-checked claims that match newly encountered claims expressed in social media posts across different languages. The task includes two subtracks: (1) a monolingual track, where social posts and claims are in the same language, and (2) a crosslingual track, where social posts and claims might be in different languages. A total of 179 participants registered for the task contributing to 52 test submissions. 23 out of 31 teams have submitted their system papers. In this paper, we report the best-performing systems as well as the most common and the most effective approaches across both subtracks. This shared task, along with its dataset and participating systems, provides valuable insights into multilingual claim retrieval and automated fact-checking, supporting future research in this field.
Abstract:Sparse autoencoders (SAEs) \citep{bricken2023monosemanticity,gao2024scalingevaluatingsparseautoencoders} rely on dictionary learning to extract interpretable features from neural networks at scale in an unsupervised manner, with applications to representation engineering and information retrieval. SAEs are, however, computationally expensive \citep{lieberum2024gemmascopeopensparse}, especially when multiple SAEs of different sizes are needed. We show that dictionary importance in vanilla SAEs follows a power law. We compare progressive coding based on subset pruning of SAEs -- to jointly training nested SAEs, or so-called {\em Matryoshka} SAEs \citep{bussmann2024learning,nabeshima2024Matryoshka} -- on a language modeling task. We show Matryoshka SAEs exhibit lower reconstruction loss and recaptured language modeling loss, as well as higher representational similarity. Pruned vanilla SAEs are more interpretable, however. We discuss the origins and implications of this trade-off.
Abstract:Federated learning (FL) is a machine learning approach that allows multiple devices or institutions to collaboratively train a model without sharing their local data with a third-party. FL is considered a promising way to address patient privacy concerns in medical artificial intelligence. The ethical risks of medical FL systems themselves, however, have thus far been underexamined. This paper aims to address this gap. We argue that medical FL presents a new variety of opacity -- federation opacity -- that, in turn, generates a distinctive double black box problem in healthcare AI. We highlight several instances in which the anticipated benefits of medical FL may be exaggerated, and conclude by highlighting key challenges that must be overcome to make FL ethically feasible in medicine.
Abstract:This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
Abstract:Li et al. (2023) used the Othello board game as a test case for the ability of GPT-2 to induce world models, and were followed up by Nanda et al. (2023b). We briefly discuss the original experiments, expanding them to include more language models with more comprehensive probing. Specifically, we analyze sequences of Othello board states and train the model to predict the next move based on previous moves. We evaluate seven language models (GPT-2, T5, Bart, Flan-T5, Mistral, LLaMA-2, and Qwen2.5) on the Othello task and conclude that these models not only learn to play Othello, but also induce the Othello board layout. We find that all models achieve up to 99% accuracy in unsupervised grounding and exhibit high similarity in the board features they learned. This provides considerably stronger evidence for the Othello World Model Hypothesis than previous works.
Abstract:What ethical concerns, if any, do LLM researchers have? We introduce EthiCon, a corpus of 1,580 ethical concern statements extracted from scientific papers published in the ACL Anthology. We extract ethical concern keywords from the statements and show promising results in automating the concern identification process. Through a survey, we compare the ethical concerns of the corpus to the concerns listed by the general public and professionals in the field. Finally, we compare our retrieved ethical concerns with existing taxonomies pointing to gaps and future research directions.
Abstract:Question answering is a natural language understanding task that involves reasoning over both explicit context and unstated, relevant domain knowledge. Large language models (LLMs), which underpin most contemporary question answering systems, struggle to induce how concepts relate in specialized domains such as medicine. Existing medical LLMs are also costly to train. In this work, we present MEG, a parameter-efficient approach for medical knowledge-augmented LLMs. MEG uses a lightweight mapping network to integrate graph embeddings into the LLM, enabling it to leverage external knowledge in a cost-effective way. We evaluate our method on four popular medical multiple-choice datasets and show that LLMs greatly benefit from the factual grounding provided by knowledge graph embeddings. MEG attains an average of +10.2% accuracy over the Mistral-Instruct baseline, and +6.7% over specialized models like BioMistral. We also show results based on Llama-3. Finally, we show that MEG's performance remains robust to the choice of graph encoder.
Abstract:Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has primarily focused on English monolingual models. The question of how these processes generalize to other languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of two highly multilingual LLMs. We assess the extent to which previously identified components and mechanisms of factual recall in English apply to a multilingual context. Then, we examine when language plays a role in the recall process, uncovering evidence of language-independent and language-dependent mechanisms.