Large language models (LLMs) increasingly rely on retrieving information from external corpora. This creates a new attack surface: indirect prompt injection (IPI), where hidden instructions are planted in the corpora and hijack model behavior once retrieved. Previous studies have highlighted this risk but often avoid the hardest step: ensuring that malicious content is actually retrieved. In practice, unoptimized IPI is rarely retrieved under natural queries, which leaves its real-world impact unclear. We address this challenge by decomposing the malicious content into a trigger fragment that guarantees retrieval and an attack fragment that encodes arbitrary attack objectives. Based on this idea, we design an efficient and effective black-box attack algorithm that constructs a compact trigger fragment to guarantee retrieval for any attack fragment. Our attack requires only API access to embedding models, is cost-efficient (as little as $0.21 per target user query on OpenAI's embedding models), and achieves near-100% retrieval across 11 benchmarks and 8 embedding models (including both open-source models and proprietary services). Based on this attack, we present the first end-to-end IPI exploits under natural queries and realistic external corpora, spanning both RAG and agentic systems with diverse attack objectives. These results establish IPI as a practical and severe threat: when a user issued a natural query to summarize emails on frequently asked topics, a single poisoned email was sufficient to coerce GPT-4o into exfiltrating SSH keys with over 80% success in a multi-agent workflow. We further evaluate several defenses and find that they are insufficient to prevent the retrieval of malicious text, highlighting retrieval as a critical open vulnerability.
Although long-term memory systems have made substantial progress in recent years, they still exhibit clear limitations in adaptability, scalability, and self-evolution under continuous interaction settings. Inspired by cognitive theories, we propose HiMem, a hierarchical long-term memory framework for long-horizon dialogues, designed to support memory construction, retrieval, and dynamic updating during sustained interactions. HiMem constructs cognitively consistent Episode Memory via a Topic-Aware Event--Surprise Dual-Channel Segmentation strategy, and builds Note Memory that captures stable knowledge through a multi-stage information extraction pipeline. These two memory types are semantically linked to form a hierarchical structure that bridges concrete interaction events and abstract knowledge, enabling efficient retrieval without sacrificing information fidelity. HiMem supports both hybrid and best-effort retrieval strategies to balance accuracy and efficiency, and incorporates conflict-aware Memory Reconsolidation to revise and supplement stored knowledge based on retrieval feedback. This design enables continual memory self-evolution over long-term use. Experimental results on long-horizon dialogue benchmarks demonstrate that HiMem consistently outperforms representative baselines in accuracy, consistency, and long-term reasoning, while maintaining favorable efficiency. Overall, HiMem provides a principled and scalable design paradigm for building adaptive and self-evolving LLM-based conversational agents. The code is available at https://github.com/jojopdq/HiMem.
The Natural Conversation Benchmark (NC-Bench) introduce a new approach to evaluating the general conversational competence of large language models (LLMs). Unlike prior benchmarks that focus on the content of model behavior, NC-Bench focuses on the form and structure of natural conversation. Grounded in the IBM Natural Conversation Framework (NCF), NC-Bench comprises three distinct sets. The Basic Conversation Competence set evaluates fundamental sequence management practices, such as answering inquiries, repairing responses, and closing conversational pairs. The RAG set applies the same sequence management patterns as the first set but incorporates retrieval-augmented generation (RAG). The Complex Request set extends the evaluation to complex requests involving more intricate sequence management patterns. Each benchmark tests a model's ability to produce contextually appropriate conversational actions in response to characteristic interaction patterns. Initial evaluations across 6 open-source models and 14 interaction patterns show that models perform well on basic answering tasks, struggle more with repair tasks (especially repeat), have mixed performance on closing sequences, and find complex multi-turn requests most challenging, with Qwen models excelling on the Basic set and Granite models on the RAG set and the Complex Request set. By operationalizing fundamental principles of human conversation, NC-Bench provides a lightweight, extensible, and theory-grounded framework for assessing and improving the conversational abilities of LLMs beyond topical or task-specific benchmarks.
Large language models (LLMs) have demonstrated competitive performance in zero-shot multilingual machine translation (MT). Some follow-up works further improved MT performance via preference optimization, but they leave a key aspect largely underexplored: the order in which data samples are given during training. We address this topic by integrating curriculum learning into various state-of-the-art preference optimization algorithms to boost MT performance. We introduce a novel curriculum learning strategy with restarts (CLewR), which reiterates easy-to-hard curriculum multiple times during training to effectively mitigate the catastrophic forgetting of easy examples. We demonstrate consistent gains across several model families (Gemma2, Qwen2.5, Llama3.1) and preference optimization techniques. We publicly release our code at https://github.com/alexandra-dragomir/CLewR.
High-fidelity agent initialization is crucial for credible Agent-Based Modeling across diverse domains. A robust framework should be Topic-Adaptive, capturing macro-level joint distributions while ensuring micro-level individual rationality. Existing approaches fall into two categories: static data-based retrieval methods that fail to adapt to unseen topics absent from the data, and LLM-based generation methods that lack macro-level distribution awareness, resulting in inconsistencies between micro-level persona attributes and reality. To address these problems, we propose HAG, a Hierarchical Agent Generation framework that formalizes population generation as a two-stage decision process. Firstly, utilizing a World Knowledge Model to infer hierarchical conditional probabilities to construct the Topic-Adaptive Tree, achieving macro-level distribution alignment. Then, grounded real-world data, instantiation and agentic augmentation are carried out to ensure micro-level consistency. Given the lack of specialized evaluation, we establish a multi-domain benchmark and a comprehensive PACE evaluation framework. Extensive experiments show that HAG significantly outperforms representative baselines, reducing population alignment errors by an average of 37.7% and enhancing sociological consistency by 18.8%.
Large language models (LLMs) are expected to be trained to act as agents in various real-world environments, but this process relies on rich and varied tool-interaction sandboxes. However, access to real systems is often restricted; LLM-simulated environments are prone to hallucinations and inconsistencies; and manually built sandboxes are hard to scale. In this paper, we propose EnvScaler, an automated framework for scalable tool-interaction environments via programmatic synthesis. EnvScaler comprises two components. First, SkelBuilder constructs diverse environment skeletons through topic mining, logic modeling, and quality evaluation. Then, ScenGenerator generates multiple task scenarios and rule-based trajectory validation functions for each environment. With EnvScaler, we synthesize 191 environments and about 7K scenarios, and apply them to Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) for Qwen3 series models. Results on three benchmarks show that EnvScaler significantly improves LLMs' ability to solve tasks in complex environments involving multi-turn, multi-tool interactions. We release our code and data at https://github.com/RUC-NLPIR/EnvScaler.
Large language models (LLMs) achieve strong performance on many tasks, but their progress remains uneven across languages and cultures, often reflecting values latent in English-centric training data. To enable practical cultural alignment, we propose a scalable approach that leverages national social studies curricula as a foundation for culture-aware supervision. We introduce CuCu, an automated multi-agent LLM framework that transforms national textbook curricula into open-ended, culture-specific question-answer pairs. Applying CuCu to the Korean national social studies curriculum, we construct KCaQA, comprising 34.1k open-ended QA pairs. Our quantitative and qualitative analyses suggest that KCaQA covers culture-specific topics and produces responses grounded in local sociocultural contexts.
Identifying suitable datasets for a research question remains challenging because existing dataset search engines rely heavily on metadata quality and keyword overlap, which often fail to capture the semantic intent of scientific investigation. We introduce a literature-driven framework that discovers datasets from citation contexts in scientific papers, enabling retrieval grounded in actual research use rather than metadata availability. Our approach combines large-scale citation-context extraction, schema-guided dataset recognition with Large Language Models, and provenance-preserving entity resolution. We evaluate the system on eight survey-derived computer science queries and find that it achieves substantially higher recall than Google Dataset Search and DataCite Commons, with normalized recall ranging from an average of 47.47% to a highest value of 81.82%. Beyond recovering gold-standard datasets, the method also surfaces additional datasets not documented in the surveys. Expert assessments across five top-level Fields of Science indicate that a substantial portion of the additional datasets are considered high utility, and some are regarded as novel for the specific topics chosen by the experts. These findings establish citation-context mining as an effective and generalizable paradigm for dataset discovery, particularly in settings where datasets lack sufficient or reliable metadata. To support reproducibility and future extensions, we release our code, evaluation datasets, and results on GitHub (https://github.com/Fireblossom/citation-context-dataset-discovery).
To develop a reliable AI for psychological assessment, we introduce \texttt{PsychEval}, a multi-session, multi-therapy, and highly realistic benchmark designed to address three key challenges: \textbf{1) Can we train a highly realistic AI counselor?} Realistic counseling is a longitudinal task requiring sustained memory and dynamic goal tracking. We propose a multi-session benchmark (spanning 6-10 sessions across three distinct stages) that demands critical capabilities such as memory continuity, adaptive reasoning, and longitudinal planning. The dataset is annotated with extensive professional skills, comprising over 677 meta-skills and 4577 atomic skills. \textbf{2) How to train a multi-therapy AI counselor?} While existing models often focus on a single therapy, complex cases frequently require flexible strategies among various therapies. We construct a diverse dataset covering five therapeutic modalities (Psychodynamic, Behaviorism, CBT, Humanistic Existentialist, and Postmodernist) alongside an integrative therapy with a unified three-stage clinical framework across six core psychological topics. \textbf{3) How to systematically evaluate an AI counselor?} We establish a holistic evaluation framework with 18 therapy-specific and therapy-shared metrics across Client-Level and Counselor-Level dimensions. To support this, we also construct over 2,000 diverse client profiles. Extensive experimental analysis fully validates the superior quality and clinical fidelity of our dataset. Crucially, \texttt{PsychEval} transcends static benchmarking to serve as a high-fidelity reinforcement learning environment that enables the self-evolutionary training of clinically responsible and adaptive AI counselors.
Foundation models are powerful yet often opaque in their decision-making. A topic of continued interest in both neuroscience and artificial intelligence is whether some neurons behave like grandmother cells, i.e., neurons that are inherently interpretable because they exclusively respond to single concepts. In this work, we propose two information-theoretic measures that quantify the neuronal saliency and selectivity for single concepts. We apply these metrics to the representations of TabPFN, a tabular foundation model, and perform a simple search across neuron-concept pairs to find the most salient and selective pair. Our analysis provides the first evidence that some neurons in such models show moderate, statistically significant saliency and selectivity for high-level concepts. These findings suggest that interpretable neurons can emerge naturally and that they can, in some cases, be identified without resorting to more complex interpretability techniques.