This paper introduces a novel Deep Researcher architecture designed to generate detailed research reports on complex PhD level topics by addressing the inherent limitations of the Parallel Scaling paradigm. Our system utilizes two key innovations: Sequential Research Plan Refinement via Reflection and a Candidates Crossover algorithm. The sequential refinement process is demonstrated as an efficient method that allows the agent to maintain a centralized Global Research Context, enabling it to look back at current progress, reason about the research plan, and intelligently make changes at runtime. This dynamic adaptation contrasts with parallel approaches, which often suffer from siloed knowledge. The Candidates Crossover algorithm further enhances search efficiency by deploying multiple LLM candidates with varied parameters to explore a larger search space, with their findings synthesized to curate a comprehensive final research response. The process concludes with One Shot Report Generation, ensuring the final document is informed by a unified narrative and high fact density. Powered by the Gemini 2.5 Pro model, our Deep Researcher was evaluated on the DeepResearch Bench, a globally recognized benchmark of 100 doctoral level research tasks. Our architecture achieved an overall score of 46.21, demonstrating superior performance by surpassing leading deep research agents such as Claude Researcher, Nvidia AIQ Research Assistant, Perplexity Research, Kimi Researcher and Grok Deeper Search present on the DeepResearch Bench actively running leaderboard. This performance marginally exceeds our previous work, Static DRA, and reinforces the finding that sequential scaling consistently outperforms the parallel self consistency paradigm.
Evolutionary prompt search is a practical black-box approach for red teaming large language models (LLMs), but existing methods often collapse onto a small family of high-performing prompts, limiting coverage of distinct failure modes. We present a speciated quality-diversity (QD) extension of ToxSearch that maintains multiple high-toxicity prompt niches in parallel rather than optimizing a single best prompt. ToxSearch-S introduces unsupervised prompt speciation via a search methodology that maintains capacity-limited species with exemplar leaders, a reserve pool for outliers and emerging niches, and species-aware parent selection that trades off within-niche exploitation and cross-niche exploration. ToxSearch-S is found to reach higher peak toxicity ($\approx 0.73$ vs.\ $\approx 0.47$) and a extreme heavier tail (top-10 median $0.66$ vs.\ $0.45$) than the baseline, while maintaining comparable performance on moderately toxic prompts. Speciation also yields broader semantic coverage under a topic-as-species analysis (higher effective topic diversity $N_1$ and larger unique topic coverage $K$). Finally, species formed are well-separated in embedding space (mean separation ratio $\approx 1.93$) and exhibit distinct toxicity distributions, indicating that speciation partitions the adversarial space into behaviorally differentiated niches rather than superficial lexical variants. This suggests our approach uncovers a wider range of attack strategies.
Automated narrative intelligence systems for social media monitoring face significant scalability challenges when processing continuous data streams using traditional batch clustering algorithms. We investigate the replacement of HDBSCAN (offline clustering) with online (streaming/incremental) clustering methods in a production narrative report generation pipeline. The proposed system employs a three-stage architecture (data collection, modeling, dashboard generation) that processes thousands of multilingual social media documents daily. While HDBSCAN excels at discovering hierarchical density-based clusters and handling noise, its batch-only nature necessitates complete retraining for each time window, resulting in memory constraints, computational inefficiency, and inability to adapt to evolving narratives in real-time. This work evaluates a bunch of online clustering algorithms across dimensions of cluster quality preservation, computational efficiency, memory footprint, and integration compatibility with existing workflows. We propose evaluation criteria that balance traditional clustering metrics (Silhouette Coefficient, Davies-Bouldin Index) with narrative metrics (narrative distinctness, contingency and variance). Our methodology includes sliding-window simulations on historical datasets from Ukraine information space, enabling comparative analysis of algorithmic trade-offs in realistic operational contexts. This research addresses a critical gap between batch-oriented topic modeling frameworks and the streaming nature of social media monitoring, with implications for computational social science, crisis informatics, and narrative surveillance systems.
Natural-language user profiles have recently attracted attention not only for improved interpretability, but also for their potential to make recommender systems more steerable. By enabling direct editing, natural-language profiles allow users to explicitly articulate preferences that may be difficult to infer from past behavior. However, it remains unclear whether current natural-language-based recommendation methods can follow such steering commands. While existing steerability evaluations have shown some success for well-recognized item attributes (e.g., movie genres), we argue that these benchmarks fail to capture the richer forms of user control that motivate steerable recommendations. To address this gap, we introduce SteerEval, an evaluation framework designed to measure more nuanced and diverse forms of steerability by using interventions that range from genres to content-warning for movies. We assess the steerability of a family of pretrained natural-language recommenders, examine the potential and limitations of steering on relatively niche topics, and compare how different profile and recommendation interventions impact steering effectiveness. Finally, we offer practical design suggestions informed by our findings and discuss future steps in steerable recommender design.
Tip-of-the-tongue (ToT) known-item retrieval involves re-finding an item for which the searcher does not reliably recall an identifier. ToT information requests (or queries) are verbose and tend to include several complex phenomena, making them especially difficult for existing information retrieval systems. The TREC 2025 ToT track focused on a single ad-hoc retrieval task. This year, we extended the track to general domain and incorporated different sets of test queries from diverse sources, namely from the MS-ToT dataset, manual topic development, and LLM-based synthetic query generation. This year, 9 groups (including the track coordinators) submitted 32 runs.
Existing research often treats parliamentary discourse as a homogeneous whole, overlooking topic-specific patterns. Parliamentary speeches address a wide range of topics, some of which evoke stronger emotions than others. While everyone has intuitive assumptions about what the most emotive topics in a parliament may be, there has been little research into the emotions typically linked to different topics. This paper strives to fill this gap by examining emotion expression among the topics of parliamentary speeches delivered in Eduskunta, the Finnish Parliament, between 2000 and 2020. An emotion analysis model is used to investigate emotion expression in topics, from both synchronic and diachronic perspectives. The results strengthen evidence of increasing positivity in parliamentary speech and provide further insights into topic-specific emotion expression within parliamentary debate.
Online hate on social media ranges from overt slurs and threats (\emph{hard hate speech}) to \emph{soft hate speech}: discourse that appears reasonable on the surface but uses framing and value-based arguments to steer audiences toward blaming or excluding a target group. We hypothesize that current moderation systems, largely optimized for surface toxicity cues, are not robust to this reasoning-driven hostility, yet existing benchmarks do not measure this gap systematically. We introduce \textbf{\textsc{SoftHateBench}}, a generative benchmark that produces soft-hate variants while preserving the underlying hostile standpoint. To generate soft hate, we integrate the \emph{Argumentum Model of Topics} (AMT) and \emph{Relevance Theory} (RT) in a unified framework: AMT provides the backbone argument structure for rewriting an explicit hateful standpoint into a seemingly neutral discussion while preserving the stance, and RT guides generation to keep the AMT chain logically coherent. The benchmark spans \textbf{7} sociocultural domains and \textbf{28} target groups, comprising \textbf{4,745} soft-hate instances. Evaluations across encoder-based detectors, general-purpose LLMs, and safety models show a consistent drop from hard to soft tiers: systems that detect explicit hostility often fail when the same stance is conveyed through subtle, reasoning-based language. \textcolor{red}{\textbf{Disclaimer.} Contains offensive examples used solely for research.}
The numerical solution of differential equations using neural networks has become a central topic in scientific computing, with Physics-Informed Neural Networks (PINNs) emerging as a powerful paradigm for both forward and inverse problems. However, unlike classical numerical methods that offer established convergence guarantees, neural network-based approximations typically lack rigorous error bounds. Furthermore, the non-deterministic nature of their optimization makes it difficult to mathematically certify their accuracy. To address these challenges, we propose a "Learn and Verify" framework that provides computable, mathematically rigorous error bounds for the solutions of differential equations. By combining a novel Doubly Smoothed Maximum (DSM) loss for training with interval arithmetic for verification, we compute rigorous a posteriori error bounds as machine-verifiable proofs. Numerical experiments on nonlinear Ordinary Differential Equations (ODEs), including problems with time-varying coefficients and finite-time blow-up, demonstrate that the proposed framework successfully constructs rigorous enclosures of the true solutions, establishing a foundation for trustworthy scientific machine learning.
Reviewer assignment is increasingly critical yet challenging in the LLM era, where rapid topic shifts render many pre-2023 benchmarks outdated and where proxy signals poorly reflect true reviewer familiarity. We address this evaluation bottleneck by introducing LR-bench, a high-fidelity, up-to-date benchmark curated from 2024-2025 AI/NLP manuscripts with five-level self-assessed familiarity ratings collected via a large-scale email survey, yielding 1055 expert-annotated paper-reviewer-score annotations. We further propose RATE, a reviewer-centric ranking framework that distills each reviewer's recent publications into compact keyword-based profiles and fine-tunes an embedding model with weak preference supervision constructed from heuristic retrieval signals, enabling matching each manuscript against a reviewer profile directly. Across LR-bench and the CMU gold-standard dataset, our approach consistently achieves state-of-the-art performance, outperforming strong embedding baselines by a clear margin. We release LR-bench at https://huggingface.co/datasets/Gnociew/LR-bench, and a GitHub repository at https://github.com/Gnociew/RATE-Reviewer-Assign.
In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.