Abstract:Large Language Models (LLMs) have enabled new ways to satisfy information needs. Although great strides have been made in applying them to settings like document ranking and short-form text generation, they still struggle to compose complete, accurate, and verifiable long-form reports. Reports with these qualities are necessary to satisfy the complex, nuanced, or multi-faceted information needs of users. In this perspective paper, we draw together opinions from industry and academia, and from a variety of related research areas, to present our vision for automatic report generation, and -- critically -- a flexible framework by which such reports can be evaluated. In contrast with other summarization tasks, automatic report generation starts with a detailed description of an information need, stating the necessary background, requirements, and scope of the report. Further, the generated reports should be complete, accurate, and verifiable. These qualities, which are desirable -- if not required -- in many analytic report-writing settings, require rethinking how to build and evaluate systems that exhibit these qualities. To foster new efforts in building these systems, we present an evaluation framework that draws on ideas found in various evaluations. To test completeness and accuracy, the framework uses nuggets of information, expressed as questions and answers, that need to be part of any high-quality generated report. Additionally, evaluation of citations that map claims made in the report to their source documents ensures verifiability.
Abstract:PLAID, an efficient implementation of the ColBERT late interaction bi-encoder using pretrained language models for ranking, consistently achieves state-of-the-art performance in monolingual, cross-language, and multilingual retrieval. PLAID differs from ColBERT by assigning terms to clusters and representing those terms as cluster centroids plus compressed residual vectors. While PLAID is effective in batch experiments, its performance degrades in streaming settings where documents arrive over time because representations of new tokens may be poorly modeled by the earlier tokens used to select cluster centroids. PLAID Streaming Hierarchical Indexing that Runs on Terabytes of Temporal Text (PLAID SHIRTTT) addresses this concern using multi-phase incremental indexing based on hierarchical sharding. Experiments on ClueWeb09 and the multilingual NeuCLIR collection demonstrate the effectiveness of this approach both for the largest collection indexed to date by the ColBERT architecture and in the multilingual setting, respectively.
Abstract:Recent work in cross-language information retrieval (CLIR), where queries and documents are in different languages, has shown the benefit of the Translate-Distill framework that trains a cross-language neural dual-encoder model using translation and distillation. However, Translate-Distill only supports a single document language. Multilingual information retrieval (MLIR), which ranks a multilingual document collection, is harder to train than CLIR because the model must assign comparable relevance scores to documents in different languages. This work extends Translate-Distill and propose Multilingual Translate-Distill (MTD) for MLIR. We show that ColBERT-X models trained with MTD outperform their counterparts trained ith Multilingual Translate-Train, which is the previous state-of-the-art training approach, by 5% to 25% in nDCG@20 and 15% to 45% in MAP. We also show that the model is robust to the way languages are mixed in training batches. Our implementation is available on GitHub.
Abstract:Multilingual information retrieval (MLIR) considers the problem of ranking documents in several languages for a query expressed in a language that may differ from any of those languages. Recent work has observed that approaches such as combining ranked lists representing a single document language each or using multilingual pretrained language models demonstrate a preference for one language over others. This results in systematic unfair treatment of documents in different languages. This work proposes a language fairness metric to evaluate whether documents across different languages are fairly ranked through statistical equivalence testing using the Kruskal-Wallis test. In contrast to most prior work in group fairness, we do not consider any language to be an unprotected group. Thus our proposed measure, PEER (Probability of EqualExpected Rank), is the first fairness metric specifically designed to capture the language fairness of MLIR systems. We demonstrate the behavior of PEER on artificial ranked lists. We also evaluate real MLIR systems on two publicly available benchmarks and show that the PEER scores align with prior analytical findings on MLIR fairness. Our implementation is compatible with ir-measures and is available at http://github.com/hltcoe/peer_measure.
Abstract:Probabilistic Structured Queries (PSQ) is a cross-language information retrieval (CLIR) method that uses translation probabilities statistically derived from aligned corpora. PSQ is a strong baseline for efficient CLIR using sparse indexing. It is, therefore, useful as the first stage in a cascaded neural CLIR system whose second stage is more effective but too inefficient to be used on its own to search a large text collection. In this reproducibility study, we revisit PSQ by introducing an efficient Python implementation. Unconstrained use of all translation probabilities that can be estimated from aligned parallel text would in the limit assign a weight to every vocabulary term, precluding use of an inverted index to serve queries efficiently. Thus, PSQ's effectiveness and efficiency both depend on how translation probabilities are pruned. This paper presents experiments over a range of modern CLIR test collections to demonstrate that achieving Pareto optimal PSQ effectiveness-efficiency tradeoffs benefits from multi-criteria pruning, which has not been fully explored in prior work. Our Python PSQ implementation is available on GitHub(https://github.com/hltcoe/PSQ) and unpruned translation tables are available on Huggingface Models(https://huggingface.co/hltcoe/psq_translation_tables).
Abstract:This paper describes the submission runs from the HLTCOE team at the CIRAL CLIR tasks for African languages at FIRE 2023. Our submissions use machine translation models to translate the documents and the training passages, and ColBERT-X as the retrieval model. Additionally, we present a set of unofficial runs that use an alternative training procedure with a similar training setting.
Abstract:The HLTCOE team applied PLAID, an mT5 reranker, and document translation to the TREC 2023 NeuCLIR track. For PLAID we included a variety of models and training techniques -- the English model released with ColBERT v2, translate-train~(TT), Translate Distill~(TD) and multilingual translate-train~(MTT). TT trains a ColBERT model with English queries and passages automatically translated into the document language from the MS-MARCO v1 collection. This results in three cross-language models for the track, one per language. MTT creates a single model for all three document languages by combining the translations of MS-MARCO passages in all three languages into mixed-language batches. Thus the model learns about matching queries to passages simultaneously in all languages. Distillation uses scores from the mT5 model over non-English translated document pairs to learn how to score query-document pairs. The team submitted runs to all NeuCLIR tasks: the CLIR and MLIR news task as well as the technical documents task.
Abstract:The principal goal of the TREC Neural Cross-Language Information Retrieval (NeuCLIR) track is to study the impact of neural approaches to cross-language information retrieval. The track has created four collections, large collections of Chinese, Persian, and Russian newswire and a smaller collection of Chinese scientific abstracts. The principal tasks are ranked retrieval of news in one of the three languages, using English topics. Results for a multilingual task, also with English topics but with documents from all three newswire collections, are also reported. New in this second year of the track is a pilot technical documents CLIR task for ranked retrieval of Chinese technical documents using English topics. A total of 220 runs across all tasks were submitted by six participating teams and, as baselines, by track coordinators. Task descriptions and results are presented.
Abstract:Prior work on English monolingual retrieval has shown that a cross-encoder trained using a large number of relevance judgments for query-document pairs can be used as a teacher to train more efficient, but similarly effective, dual-encoder student models. Applying a similar knowledge distillation approach to training an efficient dual-encoder model for Cross-Language Information Retrieval (CLIR), where queries and documents are in different languages, is challenging due to the lack of a sufficiently large training collection when the query and document languages differ. The state of the art for CLIR thus relies on translating queries, documents, or both from the large English MS MARCO training set, an approach called Translate-Train. This paper proposes an alternative, Translate-Distill, in which knowledge distillation from either a monolingual cross-encoder or a CLIR cross-encoder is used to train a dual-encoder CLIR student model. This richer design space enables the teacher model to perform inference in an optimized setting, while training the student model directly for CLIR. Trained models and artifacts are publicly available on Huggingface.
Abstract:A key stumbling block for neural cross-language information retrieval (CLIR) systems has been the paucity of training data. The appearance of the MS MARCO monolingual training set led to significant advances in the state of the art in neural monolingual retrieval. By translating the MS MARCO documents into other languages using machine translation, this resource has been made useful to the CLIR community. Yet such translation suffers from a number of problems. While MS MARCO is a large resource, it is of fixed size; its genre and domain of discourse are fixed; and the translated documents are not written in the language of a native speaker of the language, but rather in translationese. To address these problems, we introduce the JH-POLO CLIR training set creation methodology. The approach begins by selecting a pair of non-English passages. A generative large language model is then used to produce an English query for which the first passage is relevant and the second passage is not relevant. By repeating this process, collections of arbitrary size can be created in the style of MS MARCO but using naturally-occurring documents in any desired genre and domain of discourse. This paper describes the methodology in detail, shows its use in creating new CLIR training sets, and describes experiments using the newly created training data.