Graph structured data are widely existed and applied in the real-world applications, while it is a challenge to handling these diverse data and learning tasks on graph in an efficient manner. When facing the complicated graph learning tasks, experts have designed diverse Graph Neural Networks (GNNs) in recent years. They have also implemented AutoML in Graph, also known as AutoGraph, to automatically generate data-specific solutions. Despite their success, they encounter limitations in (1) managing diverse learning tasks at various levels, (2) dealing with different procedures in graph learning beyond architecture design, and (3) the huge requirements on the prior knowledge when using AutoGraph. In this paper, we propose to use Large Language Models (LLMs) as autonomous agents to simplify the learning process on diverse real-world graphs. Specifically, in response to a user request which may contain varying data and learning targets at the node, edge, or graph levels, the complex graph learning task is decomposed into three components following the agent planning, namely, detecting the learning intent, configuring solutions based on AutoGraph, and generating a response. The AutoGraph agents manage crucial procedures in automated graph learning, including data-processing, AutoML configuration, searching architectures, and hyper-parameter fine-tuning. With these agents, those components are processed by decomposing and completing step by step, thereby generating a solution for the given data automatically, regardless of the learning task on node or graph. The proposed method is dubbed Auto$^2$Graph, and the comparable performance on different datasets and learning tasks. Its effectiveness is demonstrated by its comparable performance on different datasets and learning tasks, as well as the human-like decisions made by the agents.
Molecular property prediction is an important problem in drug discovery and materials science. As geometric structures have been demonstrated necessary for molecular property prediction, 3D information has been combined with various graph learning methods to boost prediction performance. However, obtaining the geometric structure of molecules is not feasible in many real-world applications due to the high computational cost. In this work, we propose a novel 3D pre-training framework (dubbed 3D PGT), which pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures. Based on fact that bond length, bond angle, and dihedral angle are three basic geometric descriptors corresponding to a complete molecular 3D conformer, we first develop a multi-task generative pre-train framework based on these three attributes. Next, to automatically fuse these three generative tasks, we design a surrogate metric using the \textit{total energy} to search for weight distribution of the three pretext task since total energy corresponding to the quality of 3D conformer.Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT compared to various pre-training baselines.
Although powerful graph neural networks (GNNs) have boosted numerous real-world applications, the potential privacy risk is still underexplored. To close this gap, we perform the first comprehensive study of graph reconstruction attack that aims to reconstruct the adjacency of nodes. We show that a range of factors in GNNs can lead to the surprising leakage of private links. Especially by taking GNNs as a Markov chain and attacking GNNs via a flexible chain approximation, we systematically explore the underneath principles of graph reconstruction attack, and propose two information theory-guided mechanisms: (1) the chain-based attack method with adaptive designs for extracting more private information; (2) the chain-based defense method that sharply reduces the attack fidelity with moderate accuracy loss. Such two objectives disclose a critical belief that to recover better in attack, you must extract more multi-aspect knowledge from the trained GNN; while to learn safer for defense, you must forget more link-sensitive information in training GNNs. Empirically, we achieve state-of-the-art results on six datasets and three common GNNs. The code is publicly available at: https://github.com/tmlr-group/MC-GRA.
Making personalized recommendation for cold-start users, who only have a few interaction histories, is a challenging problem in recommendation systems. Recent works leverage hypernetworks to directly map user interaction histories to user-specific parameters, which are then used to modulate predictor by feature-wise linear modulation function. These works obtain the state-of-the-art performance. However, the physical meaning of scaling and shifting in recommendation data is unclear. Instead of using a fixed modulation function and deciding modulation position by expertise, we propose a modulation framework called ColdNAS for user cold-start problem, where we look for proper modulation structure, including function and position, via neural architecture search. We design a search space which covers broad models and theoretically prove that this search space can be transformed to a much smaller space, enabling an efficient and robust one-shot search algorithm. Extensive experimental results on benchmark datasets show that ColdNAS consistently performs the best. We observe that different modulation functions lead to the best performance on different datasets, which validates the necessity of designing a searching-based method.
Graph Neural Networks (GNNs) have been recently introduced to learn from knowledge graph (KG) and achieved state-of-the-art performance in KG reasoning. However, a theoretical certification for their good empirical performance is still absent. Besides, while logic in KG is important for inductive and interpretable inference, existing GNN-based methods are just designed to fit data distributions with limited knowledge of their logical expressiveness. We propose to fill the above gap in this paper. Specifically, we theoretically analyze GNN from logical expressiveness and find out what kind of logical rules can be captured from KG. Our results first show that GNN can capture logical rules from graded modal logic, providing a new theoretical tool for analyzing the expressiveness of GNN for KG reasoning; and a query labeling trick makes it easier for GNN to capture logical rules, explaining why SOTA methods are mainly based on labeling trick. Finally, insights from our theory motivate the development of an entity labeling method for capturing difficult logical rules. Experimental results are consistent with our theoretical results and verify the effectiveness of our proposed method.
Privacy and security concerns in real-world applications have led to the development of adversarially robust federated models. However, the straightforward combination between adversarial training and federated learning in one framework can lead to the undesired robustness deterioration. We discover that the attribution behind this phenomenon is that the generated adversarial data could exacerbate the data heterogeneity among local clients, making the wrapped federated learning perform poorly. To deal with this problem, we propose a novel framework called Slack Federated Adversarial Training (SFAT), assigning the client-wise slack during aggregation to combat the intensified heterogeneity. Theoretically, we analyze the convergence of the proposed method to properly relax the objective when combining federated learning and adversarial training. Experimentally, we verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets with different adversarial training and federated optimization methods. The code is publicly available at https://github.com/ZFancy/SFAT.
In recent years, Graph Neural Networks (GNNs) have been popular in the graph classification task. Currently, shallow GNNs are more common due to the well-known over-smoothing problem facing deeper GNNs. However, they are sub-optimal without utilizing the information from distant nodes, i.e., the long-range dependencies. The mainstream methods in the graph classification task can extract the long-range dependencies either by designing the pooling operations or incorporating the higher-order neighbors, while they have evident drawbacks by modifying the original graph structure, which may result in information loss in graph structure learning. In this paper, by justifying the smaller influence of the over-smoothing problem in the graph classification task, we evoke the importance of stacking-based GNNs and then employ them to capture the long-range dependencies without modifying the original graph structure. To achieve this, two design needs are given for stacking-based GNNs, i.e., sufficient model depth and adaptive skip-connection schemes. By transforming the two design needs into designing data-specific inter-layer connections, we propose a novel approach with the help of neural architecture search (NAS), which is dubbed LRGNN (Long-Range Graph Neural Networks). Extensive experiments on five datasets show that the proposed LRGNN can achieve the best performance, and obtained data-specific GNNs with different depth and skip-connection schemes, which can better capture the long-range dependencies.
In recent years, Graph Neural Networks (GNNs) have been popular in graph representation learning which assumes the homophily property, i.e., the connected nodes have the same label or have similar features. However, they may fail to generalize into the heterophilous graphs which in the low/medium level of homophily. Existing methods tend to address this problem by enhancing the intra-class information extraction, i.e., either by designing better GNNs to improve the model effectiveness, or re-designing the graph structures to incorporate more potential intra-class nodes from distant hops. Despite the success, we observe two aspects that can be further improved: (a) enhancing the ego feature information extraction from node itself which is more reliable in extracting the intra-class information; (b) designing node-wise GNNs can better adapt to the nodes with different homophily ratios. In this paper, we propose a novel method IIE-GNN (Intra-class Information Enhanced Graph Neural Networks) to achieve two improvements. A unified framework is proposed based on the literature, in which the intra-class information from the node itself and neighbors can be extracted based on seven carefully designed blocks. With the help of neural architecture search (NAS), we propose a novel search space based on the framework, and then provide an architecture predictor to design GNNs for each node. We further conduct experiments to show that IIE-GNN can improve the model performance by designing node-wise GNNs to enhance intra-class information extraction.
Completing missing facts is a fundamental task for temporal knowledge graphs (TKGs). Recently, graph neural network (GNN) based methods, which can simultaneously explore topological and temporal information, have become the state-of-the-art (SOTA) to complete TKGs. However, these studies are based on hand-designed architectures and fail to explore the diverse topological and temporal properties of TKG. To address this issue, we propose to use neural architecture search (NAS) to design data-specific message passing architecture for TKG completion. In particular, we develop a generalized framework to explore topological and temporal information in TKGs. Based on this framework, we design an expressive search space to fully capture various properties of different TKGs. Meanwhile, we adopt a search algorithm, which trains a supernet structure by sampling single path for efficient search with less cost. We further conduct extensive experiments on three benchmark datasets. The results show that the searched architectures by our method achieve the SOTA performances. Besides, the searched models can also implicitly reveal diverse properties in different TKGs. Our code is released in https://github.com/striderdu/SPA.