Abstract:Temporal knowledge graph reasoning (TKGR) aims to predict future events by inferring missing entities with dynamic knowledge structures. Existing LLM-based reasoning methods prioritize contextual over structural relations, struggling to extract relevant subgraphs from dynamic graphs. This limits structural information understanding, leading to unstructured, hallucination-prone inferences especially with temporal inconsistencies. To address this problem, we propose IGETR (Integration of Graph and Editing-enhanced Temporal Reasoning), a hybrid reasoning framework that combines the structured temporal modeling capabilities of Graph Neural Networks (GNNs) with the contextual understanding of LLMs. IGETR operates through a three-stage pipeline. The first stage aims to ground the reasoning process in the actual data by identifying structurally and temporally coherent candidate paths through a temporal GNN, ensuring that inference starts from reliable graph-based evidence. The second stage introduces LLM-guided path editing to address logical and semantic inconsistencies, leveraging external knowledge to refine and enhance the initial paths. The final stage focuses on integrating the refined reasoning paths to produce predictions that are both accurate and interpretable. Experiments on standard TKG benchmarks show that IGETR achieves state-of-the-art performance, outperforming strong baselines with relative improvements of up to 5.6% on Hits@1 and 8.1% on Hits@3 on the challenging ICEWS datasets. Additionally, we execute ablation studies and additional analyses confirm the effectiveness of each component.
Abstract:In this work, we tackle the challenge of recommending emerging items, whose interactions gradually accumulate over time. Existing methods often overlook this dynamic process, typically assuming that emerging items have few or even no historical interactions. Such an assumption oversimplifies the problem, as a good model must preserve the uniqueness of emerging items while leveraging their shared patterns with established ones. To address this challenge, we propose EmerFlow, a novel LLM-empowered representation learning framework that generates distinctive embeddings for emerging items. It first enriches the raw features of emerging items through LLM reasoning, then aligns these representations with the embedding space of the existing recommendation model. Finally, new interactions are incorporated through meta-learning to refine the embeddings. This enables EmerFlow to learn expressive embeddings for emerging items from only limited interactions. Extensive experiments across diverse domains, including movies and pharmaceuticals, show that EmerFlow consistently outperforms existing methods.
Abstract:Zero-shot coordination(ZSC), a key challenge in multi-agent game theory, has become a hot topic in reinforcement learning (RL) research recently, especially in complex evolving games. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators from a diverse, potentially evolving, pool of partners that are not seen before without any fine-tuning. Population-based training, which approximates such an evolving partner pool, has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient RL training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi cooperative game and confirms its superiority.
Abstract:Effective decision-making on networks often relies on learning from graph-structured data, where Graph Neural Networks (GNNs) play a central role, but they take efforts to configure and tune. In this demo, we propose LLMNet, showing how to design GNN automated through Large Language Models. Our system develops a set of agents that construct graph-related knowlege bases and then leverages Retrieval-Augmented Generation (RAG) to support automated configuration and refinement of GNN models through a knowledge-guided evolution process. These agents, equipped with specialized knowledge bases, extract insights into tasks and graph structures by interacting with the knowledge bases. Empirical results show LLMNet excels in twelve datasets across three graph learning tasks, validating its effectiveness of GNN model designing.
Abstract:Drug-drug interaction (DDI) prediction is critical for treatment safety. While large language models (LLMs) show promise in pharmaceutical tasks, their effectiveness in DDI prediction remains challenging. Inspired by the well-established clinical practice where physicians routinely reference similar historical cases to guide their decisions through case-based reasoning (CBR), we propose CBR-DDI, a novel framework that distills pharmacological principles from historical cases to improve LLM reasoning for DDI tasks. CBR-DDI constructs a knowledge repository by leveraging LLMs to extract pharmacological insights and graph neural networks (GNNs) to model drug associations. A hybrid retrieval mechanism and dual-layer knowledge-enhanced prompting allow LLMs to effectively retrieve and reuse relevant cases. We further introduce a representative sampling strategy for dynamic case refinement. Extensive experiments demonstrate that CBR-DDI achieves state-of-the-art performance, with a significant 28.7% accuracy improvement over both popular LLMs and CBR baseline, while maintaining high interpretability and flexibility.
Abstract:As higher-level intelligence emerges from the combination of modular components with lower-level intelligence, many works combines Large Language Models (LLMs) for collective intelligence. Such combination is achieved by building communications among LLMs. While current systems primarily facilitate such communication through natural language, this paper proposes a novel paradigm of direct dense vector communication between LLMs. Our approach eliminates the unnecessary embedding and de-embedding steps when LLM interact with another, enabling more efficient information transfer, fully differentiable optimization pathways, and exploration of capabilities beyond human heuristics. We use such stripped LLMs as vertexes and optimizable seq2seq modules as edges to construct LMNet, with similar structure as MLPs. By utilizing smaller pre-trained LLMs as vertexes, we train a LMNet that achieves comparable performance with LLMs in similar size with only less than 0.1% training cost. This offers a new perspective on scaling for general intelligence rather than training a monolithic LLM from scratch. Besides, the proposed method can be used for other applications, like customizing LLM with limited data, showing its versatility.
Abstract:By representing knowledge in a primary triple associated with additional attribute-value qualifiers, hyper-relational knowledge graph (HKG) that generalizes triple-based knowledge graph (KG) has been attracting research attention recently. Compared with KG, HKG is enriched with the semantic qualifiers as well as the hyper-relational graph structure. However, to model HKG, existing studies mainly focus on either semantic information or structural information therein, which however fail to capture both simultaneously. To tackle this issue, in this paper, we generalize the hyperedge expansion in hypergraph learning and propose an equivalent transformation for HKG modeling, referred to as TransEQ. Specifically, the equivalent transformation transforms a HKG to a KG, which considers both semantic and structural characteristics. Then an encoder-decoder framework is developed to bridge the modeling research between KG and HKG. In the encoder part, KG-based graph neural networks are leveraged for structural modeling; while in the decoder part, various HKG-based scoring functions are exploited for semantic modeling. Especially, we design the sharing embedding mechanism in the encoder-decoder framework with semantic relatedness captured. We further theoretically prove that TransEQ preserves complete information in the equivalent transformation, and also achieves full expressivity. Finally, extensive experiments on three benchmarks demonstrate the superior performance of TransEQ in terms of both effectiveness and efficiency. On the largest benchmark WikiPeople, TransEQ significantly improves the state-of-the-art models by 15\% on MRR.




Abstract:Subgraph-based methods have proven to be effective and interpretable in predicting drug-drug interactions (DDIs), which are essential for medical practice and drug development. Subgraph selection and encoding are critical stages in these methods, yet customizing these components remains underexplored due to the high cost of manual adjustments. In this study, inspired by the success of neural architecture search (NAS), we propose a method to search for data-specific components within subgraph-based frameworks. Specifically, we introduce extensive subgraph selection and encoding spaces that account for the diverse contexts of drug interactions in DDI prediction. To address the challenge of large search spaces and high sampling costs, we design a relaxation mechanism that uses an approximation strategy to efficiently explore optimal subgraph configurations. This approach allows for robust exploration of the search space. Extensive experiments demonstrate the effectiveness and superiority of the proposed method, with the discovered subgraphs and encoding functions highlighting the model's adaptability.
Abstract:Predicting drug-drug interaction (DDI) plays an important role in pharmacology and healthcare for identifying potential adverse interactions and beneficial combination therapies between drug pairs. Recently, a flurry of graph learning methods have been introduced to predict drug-drug interactions. However, evaluating existing methods has several limitations, such as the absence of a unified comparison framework for DDI prediction methods, lack of assessments in meaningful real-world scenarios, and insufficient exploration of side information usage. In order to address these unresolved limitations in the literature, we propose a DDI prediction benchmark on graph learning. We first conduct unified evaluation comparison among existing methods. To meet realistic scenarios, we further evaluate the performance of different methods in settings with new drugs involved and examine the performance across different DDI types. Component analysis is conducted on the biomedical network to better utilize side information. Through this work, we hope to provide more insights for the problem of DDI prediction. Our implementation and data is open-sourced at https://anonymous.4open.science/r/DDI-Benchmark-ACD9/.
Abstract:Complex networks describe important structures in nature and society, composed of nodes and the edges that connect them. The evolution of these networks is typically described by dynamics, which are labor-intensive and require expert knowledge to derive. However, because the complex network involves noisy observations from multiple trajectories of nodes, existing symbolic regression methods are either not applicable or ineffective on its dynamics. In this paper, we propose Physically Inspired Neural Dynamics Symbolic Regression (PI-NDSR), a method based on neural networks and genetic programming to automatically learn the symbolic expression of dynamics. Our method consists of two key components: a Physically Inspired Neural Dynamics (PIND) to augment and denoise trajectories through observed trajectory interpolation; and a coordinated genetic search algorithm to derive symbolic expressions. This algorithm leverages references of node dynamics and edge dynamics from neural dynamics to avoid overfitted expressions in symbolic space. We evaluate our method on synthetic datasets generated by various dynamics and real datasets on disease spreading. The results demonstrate that PI-NDSR outperforms the existing method in terms of both recovery probability and error.