The recent proliferation of diffusion models has made style mimicry effortless, enabling users to imitate unique artistic styles without authorization. In deployed platforms, this raises copyright and intellectual-property risks and calls for reliable protection. However, existing countermeasures either require costly weight editing as new styles emerge or rely on an explicitly specified editing style, limiting their practicality for deployment-side safety. To address this challenge, we propose DICE (Disentanglement of artist Style from Content via Contrastive Subspace Decomposition), a training-free framework for on-the-fly artist style erasure. Unlike style editing that require an explicitly specified replacement style, DICE performs style purification, removing the artist's characteristics while preserving the user-intended content. Our core insight is that a model cannot truly comprehend the artist style from a single text or image alone. Consequently, we abandon the traditional paradigm of identifying style from isolated samples. Instead, we construct contrastive triplets to compel the model to distinguish between style and non-style features in the latent space. By formalizing this disentanglement process as a solvable generalized eigenvalue problem, we achieve precise identification of the style subspace. Furthermore, we introduce an Adaptive Attention Decoupling Editing strategy dynamically assesses the style concentration of each token and performs differential suppression and content enhancement on the QKV vectors. Extensive experiments demonstrate that DICE achieves a superior balance between the thoroughness of style erasure and the preservation of content integrity. DICE introduces an additional overhead of only 3 seconds to disentangle style, providing a practical and efficient technique for curbing style mimicry.
To tackle the automatic recognition of "concealed emotions" in videos, this paper proposes a multimodal weak-supervision framework and achieves state-of-the-art results on the iMiGUE tennis-interview dataset. First, YOLO 11x detects and crops human portraits frame-by-frame, and DINOv2-Base extracts visual features from the cropped regions. Next, by integrating Chain-of-Thought and Reflection prompting (CoT + Reflection), Gemini 2.5 Pro automatically generates pseudo-labels and reasoning texts that serve as weak supervision for downstream models. Subsequently, OpenPose produces 137-dimensional key-point sequences, augmented with inter-frame offset features; the usual graph neural network backbone is simplified to an MLP to efficiently model the spatiotemporal relationships of the three key-point streams. An ultra-long-sequence Transformer independently encodes both the image and key-point sequences, and their representations are concatenated with BERT-encoded interview transcripts. Each modality is first pre-trained in isolation, then fine-tuned jointly, with pseudo-labeled samples merged into the training set for further gains. Experiments demonstrate that, despite severe class imbalance, the proposed approach lifts accuracy from under 0.6 in prior work to over 0.69, establishing a new public benchmark. The study also validates that an "MLP-ified" key-point backbone can match - or even surpass - GCN-based counterparts in this task.
With the success of static black-hole imaging, the next frontier is the dynamic and 3D imaging of black holes. Recovering the dynamic 3D gas near a black hole would reveal previously-unseen parts of the universe and inform new physics models. However, only sparse radio measurements from a single viewpoint are possible, making the dynamic 3D reconstruction problem significantly ill-posed. Previously, BH-NeRF addressed the ill-posed problem by assuming Keplerian dynamics of the gas, but this assumption breaks down near the black hole, where the strong gravitational pull of the black hole and increased electromagnetic activity complicate fluid dynamics. To overcome the restrictive assumptions of BH-NeRF, we propose PI-DEF, a physics-informed approach that uses differentiable neural rendering to fit a 4D (time + 3D) emissivity field given EHT measurements. Our approach jointly reconstructs the 3D velocity field with the 4D emissivity field and enforces the velocity as a soft constraint on the dynamics of the emissivity. In experiments on simulated data, we find significantly improved reconstruction accuracy over both BH-NeRF and a physics-agnostic approach. We demonstrate how our method may be used to estimate other physics parameters of the black hole, such as its spin.
The clinical application of cone-beam computed tomography (CBCT) is constrained by the inherent trade-off between radiation exposure and image quality. Ultra-sparse angular sampling, employed to reduce dose, introduces severe undersampling artifacts and inter-slice inconsistencies, compromising diagnostic reliability. Existing reconstruction methods often struggle to balance angular continuity with spatial detail fidelity. To address these challenges, we propose a Continuity-driven Synergistic Diffusion with Neural priors (CSDN) for ultra-sparse-view CBCT reconstruction. Neural priors are introduced as a structural foundation to encode a continuous threedimensional attenuation representation, enabling the synthesis of physically consistent dense projections from ultra-sparse measurements. Building upon this neural-prior-based initialization, a synergistic diffusion strategy is developed, consisting of two collaborative refinement paths: a Sinogram Refinement Diffusion (Sino-RD) process that restores angular continuity and a Digital Radiography Refinement Diffusion (DR-RD) process that enforces inter-slice consistency from the projection image perspective. The outputs of the two diffusion paths are adaptively fused by the Dual-Projection Reconstruction Fusion (DPRF) module to achieve coherent volumetric reconstruction. Extensive experiments demonstrate that the proposed CSDN effectively suppresses artifacts and recovers fine textures under ultra-sparse-view conditions, outperforming existing state-of-the-art techniques.
Spectral computed tomography (CT) with photon-counting detectors holds immense potential for material discrimination and tissue characterization. However, under ultra-low-dose conditions, the sharply degraded signal-to-noise ratio (SNR) in energy-specific projections poses a significant challenge, leading to severe artifacts and loss of structural details in reconstructed images. To address this, we propose FSP-Diff, a full-spectrum prior-enhanced dual-domain latent diffusion framework for ultra-low-dose spectral CT reconstruction. Our framework integrates three core strategies: 1) Complementary Feature Construction: We integrate direct image reconstructions with projection-domain denoised results. While the former preserves latent textural nuances amidst heavy noise, the latter provides a stable structural scaffold to balance detail fidelity and noise suppression. 2) Full-Spectrum Prior Integration: By fusing multi-energy projections into a high-SNR full-spectrum image, we establish a unified structural reference that guides the reconstruction across all energy bins. 3) Efficient Latent Diffusion Synthesis: To alleviate the high computational burden of high-dimensional spectral data, multi-path features are embedded into a compact latent space. This allows the diffusion process to facilitate interactive feature fusion in a lower-dimensional manifold, achieving accelerated reconstruction while maintaining fine-grained detail restoration. Extensive experiments on simulated and real-world datasets demonstrate that FSP-Diff significantly outperforms state-of-the-art methods in both image quality and computational efficiency, underscoring its potential for clinically viable ultra-low-dose spectral CT imaging.
Crowd scenes captured by cameras at different locations vary greatly, and existing crowd models have limited generalization for unseen surveillance scenes. To improve the generalization of the model, we regard different surveillance scenes as different category scenes, and introduce few-shot learning to make the model adapt to the unseen surveillance scene that belongs to the given exemplar category scene. To this end, we propose to leverage local and global density characteristics to guide the model of crowd counting for unseen surveillance scenes. Specifically, to enable the model to adapt to the varying density variations in the target scene, we propose the multiple local density learner to learn multi prototypes which represent different density distributions in the support scene. Subsequently, these multiple local density similarity matrixes are encoded. And they are utilized to guide the model in a local way. To further adapt to the global density in the target scene, the global density features are extracted from the support image, then it is used to guide the model in a global way. Experiments on three surveillance datasets shows that proposed method can adapt to the unseen surveillance scene and outperform recent state-of-the-art methods in the few-shot crowd counting.
Retrieving wrist radiographs with analogous fracture patterns is challenging because clinically important cues are subtle, highly localized and often obscured by overlapping anatomy or variable imaging views. Progress is further limited by the scarcity of large, well-annotated datasets for case-based medical image retrieval. We introduce WristMIR, a region-aware pediatric wrist radiograph retrieval framework that leverages dense radiology reports and bone-specific localization to learn fine-grained, clinically meaningful image representations without any manual image-level annotations. Using MedGemma-based structured report mining to generate both global and region-level captions, together with pre-processed wrist images and bone-specific crops of the distal radius, distal ulna, and ulnar styloid, WristMIR jointly trains global and local contrastive encoders and performs a two-stage retrieval process: (1) coarse global matching to identify candidate exams, followed by (2) region-conditioned reranking aligned to a predefined anatomical bone region. WristMIR improves retrieval performance over strong vision-language baselines, raising image-to-text Recall@5 from 0.82% to 9.35%. Its embeddings also yield stronger fracture classification (AUROC 0.949, AUPRC 0.953). In region-aware evaluation, the two-stage design markedly improves retrieval-based fracture diagnosis, increasing mean $F_1$ from 0.568 to 0.753, and radiologists rate its retrieved cases as more clinically relevant, with mean scores rising from 3.36 to 4.35. These findings highlight the potential of anatomically guided retrieval to enhance diagnostic reasoning and support clinical decision-making in pediatric musculoskeletal imaging. The source code is publicly available at https://github.com/quin-med-harvard-edu/WristMIR.
We consider the problem of 3D shape recovery from ultra-fast motion-blurred images. While 3D reconstruction from static images has been extensively studied, recovering geometry from extreme motion-blurred images remains challenging. Such scenarios frequently occur in both natural and industrial settings, such as fast-moving objects in sports (e.g., balls) or rotating machinery, where rapid motion distorts object appearance and makes traditional 3D reconstruction techniques like Multi-View Stereo (MVS) ineffective. In this paper, we propose a novel inverse rendering approach for shape recovery from ultra-fast motion-blurred images. While conventional rendering techniques typically synthesize blur by averaging across multiple frames, we identify a major computational bottleneck in the repeated computation of barycentric weights. To address this, we propose a fast barycentric coordinate solver, which significantly reduces computational overhead and achieves a speedup of up to 4.57x, enabling efficient and photorealistic simulation of high-speed motion. Crucially, our method is fully differentiable, allowing gradients to propagate from rendered images to the underlying 3D shape, thereby facilitating shape recovery through inverse rendering. We validate our approach on two representative motion types: rapid translation and rotation. Experimental results demonstrate that our method enables efficient and realistic modeling of ultra-fast moving objects in the forward simulation. Moreover, it successfully recovers 3D shapes from 2D imagery of objects undergoing extreme translational and rotational motion, advancing the boundaries of vision-based 3D reconstruction. Project page: https://maxmilite.github.io/rec-from-ultrafast-blur/
As AI-generated images proliferate across digital platforms, reliable detection methods have become critical for combating misinformation and maintaining content authenticity. While numerous deepfake detection methods have been proposed, existing benchmarks predominantly evaluate fine-tuned models, leaving a critical gap in understanding out-of-the-box performance -- the most common deployment scenario for practitioners. We present the first comprehensive zero-shot evaluation of 16 state-of-the-art detection methods, comprising 23 pretrained detector variants (due to multiple released versions of certain detectors), across 12 diverse datasets, comprising 2.6~million image samples spanning 291 unique generators including modern diffusion models. Our systematic analysis reveals striking findings: (1)~no universal winner exists, with detector rankings exhibiting substantial instability (Spearman~$ρ$: 0.01 -- 0.87 across dataset pairs); (2)~a 37~percentage-point performance gap separates the best detector (75.0\% mean accuracy) from the worst (37.5\%); (3)~training data alignment critically impacts generalization, causing up to 20--60\% performance variance within architecturally identical detector families; (4)~modern commercial generators (Flux~Dev, Firefly~v4, Midjourney~v7) defeat most detectors, achieving only 18--30\% average accuracy; and (5)~we identify three systematic failure patterns affecting cross-dataset generalization. Statistical analysis confirms significant performance differences between detectors (Friedman test: $χ^2$=121.01, $p<10^{-16}$, Kendall~$W$=0.524). Our findings challenge the ``one-size-fits-all'' detector paradigm and provide actionable deployment guidelines, demonstrating that practitioners must carefully select detectors based on their specific threat landscape rather than relying on published benchmark performance.
Program code serves as a bridge linking vision and logic, providing a feasible supervisory approach for enhancing the multimodal reasoning capability of large models through geometric operations such as auxiliary line construction and perspective transformation. Nevertheless, current inverse graphics methods face tremendous challenges in accurately reconstructing complex geometric details, which often results in the loss of key geometric constraints or structural distortion. To address this bottleneck, we propose Geo-coder -- the first inverse programming framework for geometric images based on a multi-agent system. Our method innovatively decouples the process into geometric modeling via pixel-wise anchoring and metric-driven code evolution: Stage 1 leverages the complementary advantages of visual operators and large models to achieve precise capture of pixel coordinates and visual attributes; Stage 2 introduces a synthesis-rendering-validation closed loop, where bidirectional visual feedback drives the self-correction of code. Extensive experiments demonstrate that Geo-coder achieves a substantial lead in both geometric reconstruction accuracy and visual consistency. Notably, by effectively preserving the core geometric semantics, the images reconstructed with our method exhibit equivalent performance to the original ones in multimodal reasoning tasks, which fully validates the robustness of the framework. Finally, to further reduce research costs, we have open-sourced the Geo-coder dataset constructed on the GeoCode framework, which contains more than 1,500 samples. On this basis, we have also open-sourced the GeocodeLM model, laying a solid data and model foundation for subsequent research in this field.